A STOCHASTIC-MODEL FOR NEURONAL BURSTING

被引:2
|
作者
FRIGESSI, A
LANSKY, P
MARIOTTO, AB
机构
[1] ACAD SCI CZECH REPUBL, INST PHYSIOL, CR-14220 PRAGUE, CZECH REPUBLIC
[2] CNR, IST APPLICAZ CALCOLO MAURO PICONE, I-00161 ROME, ITALY
[3] IST SUPER SANITA, EPIDEMIOL & BIOSTAT LAB, I-00161 ROME, ITALY
关键词
NEURONAL MODEL; MEMBRANE POTENTIAL; BURSTING; STOCHASTIC PROCESS; STATISTICAL INFERENCE;
D O I
10.1016/0303-2647(94)90056-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A new stochastic model for bursting of neuronal firing is proposed. It is based on stochastic diffusion and related to the first passage time problem. However, the model is not of renewal type. Its form and parameters are physiologically interpretable. Parametric and non-parametric inferential issues are discussed.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] Phase-locking of bursting neuronal firing to dominant LFP frequency components
    Constantinou, Maria
    Elijah, Daniel H.
    Squirrel, Daniel
    Gigg, John
    Montemurro, Marcelo A.
    BIOSYSTEMS, 2015, 136 : 73 - 79
  • [32] Delayed feedback control of bursting synchronization in a scale-free neuronal network
    Batista, C. A. S.
    Lopes, S. R.
    Viana, R. L.
    Batista, A. M.
    NEURAL NETWORKS, 2010, 23 (01) : 114 - 124
  • [33] Stochastic analysis of in-host HCV dynamics through budding and bursting process
    Pan, Sonjoy
    Chakrabarty, Siddhartha R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 80
  • [34] Paradoxical reduction and the bifurcations of neuronal bursting activity modulated by positive self-feedback
    Xianjun Wang
    Huaguang Gu
    Bo Lu
    Nonlinear Dynamics, 2020, 101 : 2383 - 2399
  • [35] Spontaneous bursting neuronal discharges recorded from peripheral nerve in human: injury discharges or not?
    Bergenheim, M
    Ribot-Ciscar, E
    Roll, JP
    Thunberg, J
    NEUROSCIENCE LETTERS, 2004, 359 (1-2) : 1 - 4
  • [36] Paradoxical reduction and the bifurcations of neuronal bursting activity modulated by positive self-feedback
    Wang, Xianjun
    Gu, Huaguang
    Lu, Bo
    NONLINEAR DYNAMICS, 2020, 101 (04) : 2383 - 2399
  • [37] BIFURCATION AND BURSTING IN MORRIS-LECAR MODEL FOR CLASS I AND CLASS II EXCITABILITY
    Duan, Lixia
    Zhai, Dehong
    Lu, Qishao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 : 391 - 399
  • [38] Degree-correlations in a bursting dynamic network model
    Vanni, Fabio
    Barucca, Paolo
    JOURNAL OF ECONOMIC INTERACTION AND COORDINATION, 2019, 14 (03) : 663 - 695
  • [39] Regulation of Electrical Bursting in a Spatiotemporal Model of a GnRH Neuron
    Chen, Xingjiang
    Iremonger, Karl
    Herbison, Allan
    Kirk, Vivien
    Sneyd, James
    BULLETIN OF MATHEMATICAL BIOLOGY, 2013, 75 (10) : 1941 - 1960
  • [40] Periodic and bursting pH oscillations in an enzyme model reaction
    Hauser, MJB
    Fricke, N
    Storb, U
    Müller, SC
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2002, 216 : 375 - 390