Additive Decomposition of Power Spectrum Density in Singular Spectrum Analysis

被引:0
|
作者
Kume, Kenji [1 ]
Nose-Togawa, Naoko [2 ]
机构
[1] Nara Womens Univ, Dept Phys, Nara 630, Japan
[2] Osaka Univ, Nucl Phys Res Ctr, Ibaraki 5670047, Japan
基金
日本学术振兴会;
关键词
Time series; singular spectrum analysis; power spectrum density; filtering interpretation; window length;
D O I
10.1142/S2424922X16500030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Singular spectrum analysis (SSA) is a nonparametric and adaptive spectral decomposition of a time series. The singular value decomposition of the trajectory matrix and the anti-diagonal averaging lead to a time-series decomposition. In this paper, we propose an novel algorithm for the additive decomposition of the power spectrum density of a time series based on the filtering interpretation of SSA. This can be used to examine the spectral overlap or the admixture of the SSA decomposition. We can obtain insights into the spectral structure of the SSA decomposition which helps us for the proper choice of the window length in the practical application. The relationship to the conventional SSA decomposition of a time series is also discussed.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] EXCHANGE RATE FORECASTING WITH OPTIMUM SINGULAR SPECTRUM ANALYSIS
    Ghodsi, Mansi
    Yarmohammadi, Masoud
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2014, 27 (01) : 47 - 55
  • [22] The Effect of Data Transformation on Singular Spectrum Analysis for Forecasting
    Hassani, Hossein
    Yeganegi, Mohammad Reza
    Khan, Atikur
    Silva, Emmanuel Sirimal
    SIGNALS, 2020, 1 (01): : 4 - 25
  • [23] A study of singular spectrum analysis with global optimization techniques
    Moody T. Chu
    Matthew M. Lin
    Liqi Wang
    Journal of Global Optimization, 2014, 60 : 551 - 574
  • [24] Weighted Linear Recurrent Forecasting in Singular Spectrum Analysis
    Kalantari, Mahdi
    Hassani, Hossein
    Silva, Emmanuel Sirimal
    FLUCTUATION AND NOISE LETTERS, 2020, 19 (01):
  • [25] Randomized singular spectrum analysis for long time series
    Rodrigues, Paulo Canas
    Tuy, Petala G. S. E.
    Mahmoudvand, Rahim
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (10) : 1921 - 1935
  • [26] A Note on Window Length Selection in Singular Spectrum Analysis
    Khan, M. Atikur Rahman
    Poskitt, D. S.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2013, 55 (02) : 87 - 108
  • [27] A METHOD OF TREND EXTRACTION USING SINGULAR SPECTRUM ANALYSIS
    Alexandrov, Theodore
    REVSTAT-STATISTICAL JOURNAL, 2009, 7 (01) : 1 - 22
  • [28] Semi-nonparametric singular spectrum analysis with projection
    Golyandina, Nina
    Shlemov, Alex
    STATISTICS AND ITS INTERFACE, 2017, 10 (01) : 47 - 57
  • [29] Predicting ambulance demand using singular spectrum analysis
    Vile, J. L.
    Gillard, J. W.
    Harper, P. R.
    Knight, V. A.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2012, 63 (11) : 1556 - 1565
  • [30] Singular spectrum analysis to estimate core inflation in Brazil
    de Oliveira Santos, Matheus Fellipe
    de Souza, Rafael Morais
    Correa, Wilson Luiz Rotatori
    CENTRAL BANK REVIEW, 2024, 24 (04)