THE CONFORMAL FACTOR IN THE SAS EINSTEIN-MAXWELL FIELD-EQUATIONS AND A CENTRAL EXTENSION OF A FORMAL LOOP GROUP

被引:3
作者
HASHIMOTO, T [1 ]
SAWAE, R [1 ]
机构
[1] SHIKOKU UNIV,DEPT MANAGEMENT & INFORMAT SCI,TOKUSHIMA 77111,JAPAN
关键词
D O I
10.1007/BF02099787
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a relation between the conformal factor in the stationary axisymmetric (SAS) Einstein Maxwell field equations and a central extension of a formal loop group which is described by a group 2-cocycle on the formal loop group. The corresponding 2-cocycle on the Lie algebra of the formal loop group is the one which describes an affine Lie algebra. As a result, we see that the space of formal solutions with conformal factors is a homogeneous space of a central extension of the Hauser group.
引用
收藏
页码:15 / 31
页数:17
相关论文
共 16 条
[1]  
BREITENLOHNER P, 1987, ANN I H POINCARE-PHY, V46, P215
[2]   4-DIMENSIONAL BLACK-HOLES FROM KALUZA-KLEIN THEORIES [J].
BREITENLOHNER, P ;
MAISON, D ;
GIBBONS, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 120 (02) :295-333
[3]  
DOI H, 1988, ADV STUD PURE MATH, V14, P379
[4]   NEW FORMULATION OF AXIALLY SYMMETRIC GRAVITATIONAL FIELD PROBLEM .2. [J].
ERNST, FJ .
PHYSICAL REVIEW, 1968, 168 (05) :1415-+
[5]   METHOD FOR GENERATING NEW SOLUTIONS OF EINSTEINS EQUATION .2. [J].
GEROCH, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (03) :394-&
[6]   AXIALLY-SYMMETRIC, STATIC SELF-DUAL SU(3) GAUGE-FIELDS AND STATIONARY EINSTEIN-MAXWELL METRICS [J].
GURSES, M ;
XANTHOPOULOS, BC .
PHYSICAL REVIEW D, 1982, 26 (08) :1912-1915
[7]  
HASHIMOTO T, 1992, HIROSHIMA MATH J, V22, P445
[8]  
HAUSER I, 1985, GALAXIES AXISYMMETRI, P115
[9]  
KAC, 1994, INFINITE DIMENSIONAL
[10]   SYMMETRIES OF STATIONARY EINSTEIN-MAXWELL FIELD EQUATIONS .1. [J].
KINNERSLEY, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (08) :1529-1537