SMALL-ANGLE KREIN COLLISIONS IN A FAMILY OF 4-DIMENSIONAL REVERSIBLE MAPS

被引:5
作者
BHOWAL, A [1 ]
ROY, TK [1 ]
LAHIRI, A [1 ]
机构
[1] VIDYASAGAR EVENING COLL, CALCUTTA 700006, INDIA
关键词
D O I
10.1103/PhysRevE.47.3932
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The small-angle Krein collision (SAKC) in four-dimensional reversible maps refers to the codimension-2 bifurcation, where the eigenvalues of the Jacobian of the map at a symmetric fixed point collide close to +1 as some relevant parameters are varied. SAKC is always associated with the bifurcation of nearby fixed points. We investigate the existence and stability of invariant curves around these fixed points for a particular family of reversible maps, and find a rich structure of the phase space.
引用
收藏
页码:3932 / 3940
页数:9
相关论文
共 12 条
[1]  
BHOWAL A, UNPUB
[2]  
BRIDGES TJ, 1992, NR739 U UTR REP
[3]   REVERSIBLE DIFFEOMORPHISMS AND FLOWS [J].
DEVANEY, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 218 (APR) :89-113
[4]  
DeVogelaere R, 1958, CONTRIBUTIONS THEORY, VIV
[5]   UNIVERSAL BEHAVIOR IN FAMILIES OF AREA-PRESERVING MAPS [J].
GREENE, JM ;
MACKAY, RS ;
VIVALDI, F ;
FEIGENBAUM, MJ .
PHYSICA D-NONLINEAR PHENOMENA, 1981, 3 (03) :468-486
[6]   STABILITY OF INVARIANT CURVES IN 4-DIMENSIONAL REVERSIBLE MAPPINGS NEAR 1/1 RESONANCE [J].
LAHIRI, A ;
BHOWAL, A ;
ROY, TK ;
SEVRYUK, MB .
PHYSICA D-NONLINEAR PHENOMENA, 1993, 63 (1-2) :99-116
[7]   CONSERVATIVE AND DISSIPATIVE BEHAVIOR IN REVERSIBLE DYNAMICAL-SYSTEMS [J].
QUISPEL, GRW ;
ROBERTS, JAG .
PHYSICS LETTERS A, 1989, 135 (6-7) :337-342
[8]   REVERSIBLE MAPPINGS OF THE PLANE [J].
QUISPEL, GRW ;
ROBERTS, JAG .
PHYSICS LETTERS A, 1988, 132 (04) :161-163
[9]   LOCAL REVERSIBILITY IN DYNAMICAL-SYSTEMS [J].
QUISPEL, GRW ;
CAPEL, HW .
PHYSICS LETTERS A, 1989, 142 (2-3) :112-116
[10]   REVERSIBLE HOPF-BIFURCATION IN 4-DIMENSIONAL MAPS [J].
ROY, TK ;
LAHIRI, A .
PHYSICAL REVIEW A, 1991, 44 (08) :4937-4944