DEVELOPMENT OF CALLOSAL CONNECTIONS IN THE SENSORIMOTOR CORTEX OF THE HAMSTER

被引:33
|
作者
NORRIS, CR
KALIL, K
机构
[1] UNIV WISCONSIN,DEPT ANAT,MADISON,WI 53706
[2] UNIV WISCONSIN,NEUROSCI TRAINING PROGRAM,MADISON,WI 53706
关键词
AXON-TARGET INTERACTIONS; AXONAL ARBOR FORMATION; GROWTH CONE; CORTICAL LAMINAR DIFFERENTIATION; CORPUS CALLOSUM;
D O I
10.1002/cne.903260111
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
To investigate the development of corpus callosal connectivity in the hamster sensorimotor cortex, we have used the sensitive axonal tracer 1,1 dioctadecyl-3,3,3'3', tetramethylindocarbocyanine perchlorate (DiI), which was injected either in vivo or in fixed brains of animals 3-6 days postnatal. First, to study changes in the overall distribution of developing callosal afferents we made large injections of DiI into the corpus callosal tract. We found that the anterogradely labeled callosal axons formed a patchy distribution in the contralateral sensorimotor cortex, which was similar to the pattern of adult connectivity described in earlier studies of the rodent. corpus callosum. This result stands in contrast to previous retrograde studies of developing callosal connectivity which showed that the distribution of callosal neurons early in development is homogeneous and that the mature, patchy distribution arises later, primarily as a result of the retraction of exuberant axons. The initial patchy distribution of callosal axon growth into the sensorimotor cortex described in the present study suggests that exuberant axons destined to be eliminated do not enter the cortex. In addition, small injections of DiI into developing cortex resulted in homotopic patterns of callosal topography in which reciprocal regions of sensorimotor cortex are connected, as has been shown in the adult. Second, to study the radial growth of callosal afferents we followed the extension of individual callosal axons into the developing cortex. We found that callosal axons began to invade the contralateral cortex on about postnatal day 3, with little or no waiting period in the callosal tract. Callosal afferents then advanced steadily through the cortex, never actually invading the cortical plate but extending into layers on the first day that they could be distinguished from the cortical plate. The majority of callosal axons grew radially through the cortex and did not exhibit substantial branching until postnatal day 8, the age when the cortical plate disappears and callosal afferents reach the outer layer of cortex. This mode of radial growth through cortex prior to axon branching could serve to align callosal afferents with their radial or columnar targets before arborizing laterally.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [1] NEUROGENESIS AND DEVELOPMENT OF CALLOSAL AND INTRACORTICAL CONNECTIONS IN THE HAMSTER
    LENT, R
    HEDINPEREIRA, C
    MENEZES, JRL
    JHAVERI, S
    NEUROSCIENCE, 1990, 38 (01) : 21 - 37
  • [2] COMPARISON OF THE PATTERNS OF CALLOSAL CONNECTIONS IN LATERAL PARIETAL CORTEX OF THE RAT, MOUSE AND HAMSTER
    OLAVARRIA, JF
    VANSLUYTERS, RC
    ANATOMY AND EMBRYOLOGY, 1995, 191 (03): : 239 - 242
  • [3] PRENATAL DEVELOPMENT OF CALLOSAL CONNECTIONS OF THE VISUAL-CORTEX IN THE MACAQUE
    BERLAND, M
    BULLIER, J
    DEHAY, C
    KENNEDY, H
    JOURNAL OF PHYSIOLOGY-LONDON, 1988, 398 : P37 - P37
  • [4] FUNCTION OF CALLOSAL CONNECTIONS OF VISUAL CORTEX
    CHOUDHURY, BP
    WHITTERIDGE, D
    WILSON, ME
    QUARTERLY JOURNAL OF EXPERIMENTAL PHYSIOLOGY AND COGNATE MEDICAL SCIENCES, 1965, 50 (02): : 214 - +
  • [5] VISUAL CALLOSAL CONNECTIONS IN THE GOLDEN-HAMSTER
    RHOADES, RW
    DELLACROCE, DD
    BRAIN RESEARCH, 1980, 190 (01) : 248 - 254
  • [6] DIAMETERS OF CALLOSAL FIBERS INTERCONNECTING CAT SENSORIMOTOR CORTEX
    NAITO, H
    MIYAKAWA, F
    ITO, N
    BRAIN RESEARCH, 1971, 27 (02) : 369 - &
  • [7] Bilateral activity and callosal connections in the somatosensory cortex
    Iwamura, Y
    Taoka, M
    Iriki, A
    NEUROSCIENTIST, 2001, 7 (05): : 419 - 429
  • [8] Callosal connections of the ferret primary auditory cortex
    M. N. Wallace
    Morag S. Harper
    Experimental Brain Research, 1997, 116 : 367 - 374
  • [9] Callosal connections of the ferret primary auditory cortex
    Wallace, MN
    Harper, MS
    EXPERIMENTAL BRAIN RESEARCH, 1997, 116 (02) : 367 - 374
  • [10] ORGANIZATION AND POSTNATAL-DEVELOPMENT OF CALLOSAL CONNECTIONS IN THE VISUAL-CORTEX OF THE RAT
    OLAVARRIA, J
    VANSLUYTERS, RC
    JOURNAL OF COMPARATIVE NEUROLOGY, 1985, 239 (01) : 1 - 26