Finite simple groups of Lie type over a field of the same characteristic with the same prime graph

被引:0
作者
Zinoveva, M. R. [1 ,2 ]
机构
[1] BN Yeltsin Ural Fed Univ, Russian Acad Sci, Inst Math & Mech, Ural Branch,Phys Mat Sci, Ekaterinburg, Russia
[2] BN Yeltsin Ural Fed Univ, Russian Acad Sci, Inst Math & Mech, Ural Branch, Ekaterinburg, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2014年 / 20卷 / 02期
关键词
finite simple group of Lie type; prime graph; spectrum;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a finite group G, let pi(G) be the set of prime divisors of its order, and let omega(G) be the set of orders of its elements. Define on pi(G) a graph with the following adjacency relation: distinct vertices r and s from pi(G) are adjacent if and only if rs is an element of omega (G). This graph is called the Grunberg-Kegel graph or prime graph of the group G and is denoted by GK(G). We prove that, if G and G(1) are nonisomorphic finite simple groups of Lie type over fields of orders q and q(1), respectively, of the same characteristic, then the graphs GK (G) and GK (G(1)) coincide if and only if either {G, G(1)} = {A(1)(8), A(2)(2)} or q = q(1) and the pair {G, G(1)} coincides with one of the pairs {B-n (q), C-n (q)} for odd q, {B-3(q), D-4(q)}, and {C-3(q), D-4(q)}.
引用
收藏
页码:168 / 183
页数:16
相关论文
共 11 条
  • [1] Conway J.H., 1985, ATLAS FINITE GROUPS
  • [2] Gerono G.C., 1870, NOUV ANN MATH, V9, P469
  • [3] The prime graph of a sporadic simple group
    Hagie, M
    [J]. COMMUNICATIONS IN ALGEBRA, 2003, 31 (09) : 4405 - 4424
  • [4] Kondratev A. S., 1989, MAT SBORNIK, V180, P787
  • [5] [Васильев Андрей Викторович Vasil'ev A.V.], 2011, [Алгебра и логика, Algebra i logika], V50, P425
  • [6] Vasilev A. V., 2005, ALGEBRA LOGIKA+, V44, p[682, 764]
  • [7] PRIME GRAPH COMPONENTS OF FINITE-GROUPS
    WILLIAMS, JS
    [J]. JOURNAL OF ALGEBRA, 1981, 69 (02) : 487 - 513
  • [8] Zavarnitsine AV, 2009, SIB ELECTRON MATH RE, V6, P1
  • [9] Zsigmondy K., 1892, MONATSH MATH PHYS, V3, P284, DOI DOI 10.1007/BF01692444
  • [10] ZVEZDINA MA, 2013, SIB MAT ZH, V54, P65