A CLASSIFICATION OF FINITE GROUPS WITH INTEGRAL BI-CAYLEY GRAPHS

被引:0
作者
Arezoomand, Majid [1 ]
Taeri, Bijan [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
关键词
Bi-Cayley graph; Integer eigenvalues; Representations of finite groups;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The bi-Cayley graph of a finite group G with respect to a subset S subset of G, which is denoted by BCay(G, S), is the graph with vertex set G x {1, 2} and edge set {{(x,1), (sx, 2)} x is an element of G, s is an element of S}. A finite group G is called a bi-Cayley integral group if for any subset S of G, BCay(G, S) is a graph with integer eigenvalues. In this paper we prove that a finite group G is a bi-Cayley integral group if and only if G is isomorphic to one of the groups Z(2)(k) for some k, Z(3) or S-3.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 15 条
  • [1] Abdollahi A, 2009, ELECTRON J COMB, V16
  • [2] Groups all of whose undirected Cayley graphs are integral
    Abdollahi, Alireza
    Jazaeri, Mojtaba
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 38 : 102 - 109
  • [3] Graphs with integral spectrum
    Ahmadi, Omran
    Alon, Noga
    Blake, Ian F.
    Shparlinski, Igor E.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) : 547 - 552
  • [4] INTEGRAL CAYLEY GRAPHS AND GROUPS
    Ahmady, Azhvan
    Bell, Jason P.
    Mohar, Bojan
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (02) : 685 - 701
  • [5] AREZOOMAND M, 2013, ELECTRON J COMB, V20, P57
  • [6] BALINSKA K, 2002, U BEOGRAD PUBL ELE M, V13, P42
  • [7] Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
  • [8] de Resmini M.J., 1992, J ALGEBRAIC COMB, V1, P171
  • [9] The spectrum of semi-Cayley graphs over abelian groups
    Gao, Xing
    Luo, Yanfeng
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2974 - 2983
  • [10] Harary F., 1973, LECT NOTES MATH, V406, P45