USING NEURAL NETS TO LOOK FOR CHAOS

被引:34
作者
ALBANO, AM [1 ]
PASSAMANTE, A [1 ]
HEDIGER, T [1 ]
FARRELL, ME [1 ]
机构
[1] USN,AIR WARFARE CTR,WARMINSTER,PA 18974
来源
PHYSICA D | 1992年 / 58卷 / 1-4期
关键词
D O I
10.1016/0167-2789(92)90098-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Backpropapting neural networks are used to reconstruct the attractors of two low-dimensional chaotic systems using small input sets of noise-corrupted data. The nets are able to reconstruct attractors that are visually similar to, and have the same correlation dimensions as, attractors constructed from noise-free data.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 21 条
  • [1] ABRAHAM NB, 1989, MEASURES COMPLEXITY
  • [2] SINGULAR-VALUE DECOMPOSITION AND THE GRASSBERGER-PROCACCIA ALGORITHM
    ALBANO, AM
    MUENCH, J
    SCHWARTZ, C
    MEES, AI
    RAPP, PE
    [J]. PHYSICAL REVIEW A, 1988, 38 (06): : 3017 - 3026
  • [3] DIMENSION INCREASE IN FILTERED CHAOTIC SIGNALS
    BADII, R
    BROGGI, G
    DERIGHETTI, B
    RAVANI, M
    CILIBERTO, S
    POLITI, A
    RUBIO, MA
    [J]. PHYSICAL REVIEW LETTERS, 1988, 60 (11) : 979 - 982
  • [4] Beale R, 1990, NEURAL COMPUTING INT
  • [5] EXTRACTING QUALITATIVE DYNAMICS FROM EXPERIMENTAL-DATA
    BROOMHEAD, DS
    KING, GP
    [J]. PHYSICA D, 1986, 20 (2-3): : 217 - 236
  • [6] CASWELL WE, 1986, DIMENSIONS ENTROPIES
  • [7] CHAOS IN DIGITAL-FILTERS
    CHUA, LO
    LIN, T
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (06): : 648 - 658
  • [8] DEGROOT C, 1992, PHYSICA D, V58, P1
  • [9] ESTIMATION OF THE KOLMOGOROV-ENTROPY FROM A CHAOTIC SIGNAL
    GRASSBERGER, P
    PROCACCIA, I
    [J]. PHYSICAL REVIEW A, 1983, 28 (04): : 2591 - 2593
  • [10] CHARACTERIZATION OF STRANGE ATTRACTORS
    GRASSBERGER, P
    PROCACCIA, I
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (05) : 346 - 349