KERNEL ESTIMATES UNDER ASSOCIATION - STRONG UNIFORM CONSISTENCY

被引:49
作者
ROUSSAS, GG [1 ]
机构
[1] UNIV CALIF DAVIS,DIV STAT,DAVIS,CA 95616
关键词
ASSOCIATED RANDOM VARIABLES; KERNEL ESTIMATES; HAZARD RATE; STRONG UNIFORM CONSISTENCY; CONVERGENCE RATES;
D O I
10.1016/0167-7152(91)90028-P
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X1, X2,... be associated random variables forming a strictly stationary sequence, and let f be the probability density function of X1. For r greater-than-or-equal-to 0 integer, let f(r) be the r th order derivative of f. Under suitable regularity conditions on a kernel function K, a sequence of bandwidths {h(n)}, the derivatives f(s), s = 0, 1,..., r, and the covariances Cov( X1, X(i)), i greater-than-or-equal-to 2, the usual kernel estimate of f(r)(x) is shown to be strongly consistent, uniformly in x. An application is also presented in the estimation of the hazard rate. Finally, certain covergence rates are also discussed.
引用
收藏
页码:393 / 403
页数:11
相关论文
共 9 条