ALMOST SURE INSTABILITY OF THE RANDOM HARMONIC-OSCILLATOR

被引:8
作者
FENG, XB
LOPARO, KA
机构
[1] Case Western Reserve Univ, , OH
关键词
D O I
10.1137/0150044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of almost sure stability of the random harmonic oscillator with a jump process coefficient is studied. It is shown that the sample paths are almost surely unstable and an asymptotic series expansion in the powers of the noise strength for the asymptotic exponential growth rate is obtained.
引用
收藏
页码:744 / 759
页数:16
相关论文
共 22 条
[2]   LYAPUNOV EXPONENTS AND ROTATION NUMBER OF TWO-DIMENSIONAL SYSTEMS WITH TELEGRAPHIC NOISE [J].
ARNOLD, L ;
KLOEDEN, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (04) :1242-1274
[3]   ASYMPTOTIC ANALYSIS OF THE LYAPUNOV EXPONENT AND ROTATION NUMBER OF THE RANDOM OSCILLATOR AND APPLICATIONS [J].
ARNOLD, L ;
PAPANICOLAOU, G ;
WIHSTUTZ, V .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (03) :427-450
[4]  
ARNOLD L, 1985, LECTURE NOTES MATH, V1186
[5]  
Benderskii M., 1970, MAT SB, V82, P245
[6]  
BENDERSKII MM, 1970, ZH EKSP TEOR FIZ, V30, P158
[7]   STABILITY AND CONTROL OF STOCHASTIC-SYSTEMS WITH WIDEBAND NOISE DISTURBANCES .1. [J].
BLANKENSHIP, G ;
PAPANICOLAOU, GC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 34 (03) :437-476
[8]  
Doob J. L., 1953, STOCHASTIC PROCESSES
[9]  
FENG X, UNPUB NONRANDOM SPEC
[10]  
Has'minskii RZ., 1980, STOCHASTIC STABILITY