NEWTONS METHOD FOR THE NONLINEAR COMPLEMENTARITY-PROBLEM - A B-DIFFERENTIABLE EQUATION APPROACH

被引:84
作者
HARKER, PT
XIAO, BC
机构
[1] Decision Sciences Department, The Wharton School, University of Pennsylvania, Philadelphia, 19104-6366, PA
关键词
B-differentiable function; global-Newton method; nonlinear complementarity;
D O I
10.1007/BF01582262
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper describes a damped-Newton method for solving the nonlinear complementarity problem when it is formulated as a system of B-differentiable equations through the use of the Minty-map. This general Newton algorithm contains a one-dimensional line search and possesses a global convergence property under certain conditions; modifications and heuristic implementations of the algorithm for the case when these conditions do not hold are also discussed. The numerical experiments show that, in general, this new scheme is more efficient and robust than the traditional Josephy-Newton algorithm. © 1990 The Mathematical Programming Society, Inc.
引用
收藏
页码:339 / 357
页数:19
相关论文
共 36 条
[1]  
[Anonymous], 2854 U WISC MATH RES
[2]  
BERTSEKAS DP, 1982, MATH PROGRAM STUD, V17, P139
[3]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[4]   DIRECT ALGORITHM FOR NON-LINEAR COMPLEMENTARITY PROBLEMS [J].
HABETLER, GJ ;
KOSTREVA, MM .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1978, 16 (03) :504-511
[5]  
Harker P.T., 1990, LECT APPL MATH, V26, P265, DOI DOI 10.1007/978-3-662-12629-5_
[6]   ALTERNATIVE MODELS OF SPATIAL COMPETITION [J].
HARKER, PT .
OPERATIONS RESEARCH, 1986, 34 (03) :410-425
[8]  
HARKER PT, 1990, MATH PROGRAMMING B, V48, P1
[9]  
Josephy N. H., 1979, 1965 U WISC MATH RES
[10]  
Josephy N. H., 1979, 1966 U WISC MATH RES