GENERALIZATIONS OF PRIMAL IDEALS IN COMMUTATIVE RINGS

被引:0
作者
Darani, Ahmad Yousefian [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Math, POB 179, Ardebil, Iran
来源
MATEMATICKI VESNIK | 2012年 / 64卷 / 01期
关键词
Primal ideal; weakly primal ideal; phi-primal ideal;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity. Let empty set: J (R) -> J (R) boolean OR {empty set} be a function where J (R) denotes the set of all ideals of R. Let I be an ideal of R. An element a is an element of R is called phi-prime to I if ra is an element of I -phi (I) (with r is an element of R) implies that r is an element of I. We denote by S-phi (I) the set of all elements of R that are not phi-prime to I. I is called a phi-primal ideal of R if the set P := S-phi(I) boolean OR phi(I) forms an ideal of R. So if we take phi(empty set)(Q) =empty set (resp., phi(0)(Q) =0 a phi-primal ideal is primal (resp., weakly primal). In this paper we study the properties of several generalizations of primal ideals of R.
引用
收藏
页码:25 / 31
页数:7
相关论文
共 6 条
[1]   Generalizations of prime ideals [J].
Anderson, D. D. ;
Bataineh, Malik .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (02) :686-696
[2]  
Anderson DD, 2003, HOUSTON J MATH, V29, P831
[3]  
Atani S. E., 2007, DEMONSTRATIO MATH, V40, P23
[4]   Unique factorization and birth of almost primes [J].
Bhatwadekar, SM ;
Sharma, PK .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (01) :43-49
[5]  
Darani A. Yousefian, CHIANG MAI J SCI
[6]  
FUCHS L, 1950, P AM MATH SOC, V1, P1