Fermat's theorem on Q (root 5)

被引:0
作者
Kraus, Alain [1 ]
机构
[1] Univ Paris 06, Equipe Theorie Nombres, Inst Math Jussieu, 4 Pl Jussieu, F-75005 Paris, France
来源
ANNALES MATHEMATIQUES DU QUEBEC | 2015年 / 39卷 / 01期
关键词
Fermat's Last Theorem; Number fields; Modular method;
D O I
10.1007/s40316-015-0030-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime number. Usingmodular arguments, we give an easy testable condition which allows often to prove Fermat's Last Theorem over the quadratic field Q(root 5) for the exponent p. It is related toWendt's resultant of the polynomials X(n-)1and(X+1)(n-1). We deduce Fermat's Last Theorem over this field for p in case one has 5 <= p <= 10(7), and we obtain results analogous to Sophie Germain type criteria.
引用
收藏
页码:49 / 59
页数:11
相关论文
共 18 条
[1]  
BATUT C, 2008, PARI GP VERSION 2 3
[2]  
Cohen H., 2000, ADV TOPICS COMPUTATI
[3]  
Freitas N., 2014, ARXIV13107088V4, P38
[4]  
Freitas N., 2014, ARXIV14074435V1, P15
[5]  
Freitas N., 2014, ARXIV13073162V3, P21
[6]   SOME RESULTS ON MORDELL-WEIL GROUP OF JACOBIAN OF FERMAT CURVE [J].
GROSS, BH ;
ROHRLICH, DE .
INVENTIONES MATHEMATICAE, 1978, 44 (03) :201-224
[7]   THE FERMAT EQUATION OVER QUADRATIC FIELDS [J].
HAO, FH ;
PARRY, CJ .
JOURNAL OF NUMBER THEORY, 1984, 19 (01) :115-130
[8]   Torsion groups of elliptic curves over quadratic fields [J].
Kamienny, Sheldon ;
Najman, Filip .
ACTA ARITHMETICA, 2012, 152 (03) :291-305
[9]   ABSENCE OF SEMISTABILITY OF ELLIPTIC-CURVES WITH ADDIT REDUCTION [J].
KRAUS, A .
MANUSCRIPTA MATHEMATICA, 1990, 69 (04) :353-385
[10]   Semi-stable elliptic curves on number fields [J].
Kraus, Alain .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (04) :611-633