A unified Monte-Carlo jackknife for small area estimation after model selection

被引:10
|
作者
Jiang, Jiming [1 ]
Lahiri, P. [2 ]
Thuan Nguyen [3 ]
机构
[1] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[2] Joint Program Survey Methodol, 1218 LeFrak Hall,7251 Preinkert Dr, College Pk, MD 20742 USA
[3] Sch Publ Hlth, 840 SW Gaines St, Portland, OR 97239 USA
关键词
Computer intensive; jackknife; log-MSPE; measure of uncertainty; model selection; Monte-Carlo; second-order unbiasedness; small area estimation;
D O I
10.4310/AMSA.2018.v3.n2.a2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider estimation of measure of uncertainty in small area estimation (SAE) when a procedure of model selection is involved prior to the estimation. A unified Monte-Carlo jackknife method, called McJack, is proposed for estimating the logarithm of the mean squared prediction error. We prove the second-order unbiasedness of McJack, and demonstrate the performance of McJack in assessing uncertainty in SAE after model selection through empirical investigations that include simulation studies and real-data analyses.
引用
收藏
页码:405 / +
页数:38
相关论文
共 50 条
  • [1] Model selection procedures in social research: Monte-Carlo simulation results
    Raffalovich, Lawrence E.
    Deane, Glenn D.
    Armstrong, David
    Tsao, Hui-shien
    JOURNAL OF APPLIED STATISTICS, 2008, 35 (10) : 1093 - 1114
  • [2] Joint Model Selection and Parameter Estimation by Population Monte Carlo Simulation
    Hong, Mingyi
    Bugallo, Monica F.
    Djuric, Petar M.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (03) : 526 - 539
  • [3] ON THE OPTIMALITY AND STABILITY OF EXPONENTIAL TWISTING IN MONTE-CARLO ESTIMATION
    SADOWSKY, JS
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (01) : 119 - 128
  • [4] A MONTE-CARLO STUDY ON THE INTERACTION BETWEEN MODEL SELECTION AND TESTING NONNORMALITY IN AUTOREGRESSIVE MODELS
    FUKUSHIGE, M
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1994, 23 (04) : 925 - 937
  • [5] MONTE-CARLO SIMULATIONS OF MODEL NEMATIC DROPLETS
    CHICCOLI, C
    PASINI, P
    SEMERIA, F
    ZANNONI, C
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1992, 212 : 197 - 204
  • [6] ON THE OPTIMAL SELECTION OF INTERPOLATION POINTS FOR USE IN MONTE-CARLO SIMULATIONS
    GOVINDARAJU, RS
    ADVANCES IN WATER RESOURCES, 1993, 16 (05) : 305 - 312
  • [7] A Monte-Carlo algorithm for maximum likelihood estimation of variance components
    Xu, S
    Atchley, WR
    GENETICS SELECTION EVOLUTION, 1996, 28 (04) : 329 - 343
  • [8] Rolling process variation estimation using a Monte-Carlo method
    Weiner, Max
    Renzing, Christoph
    Schmidtchen, Matthias
    Prahl, Ulrich
    MATERIAL FORMING, ESAFORM 2024, 2024, 41 : 908 - 913
  • [9] MONTE-CARLO ESTIMATION OF MIXED MODELS FOR LARGE COMPLEX PEDIGREES
    GUO, SW
    THOMPSON, EA
    BIOMETRICS, 1994, 50 (02) : 417 - 432
  • [10] Interval Estimation of Range of Motion after Total Hip Arthroplasty Applying Monte-Carlo Simulation
    Jung, Gisun
    Kim, Young
    Choi, Jongyou
    Song, Younghan
    Jang, Sunwoo
    Kim, Yun Bae
    Park, Jinsoo
    METHODS AND APPLICATIONS FOR MODELING AND SIMULATION OF COMPLEX SYSTEMS, 2019, 1094 : 103 - 111