On a Relation to Hilbert's Integral Inequality and a Hilbert-Type Inequality

被引:0
作者
Yang, Bicheng [1 ]
机构
[1] Guangdong Educ Inst, Dept Math, Guangzhou 510303, Guangdong, Peoples R China
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2009年 / 49卷 / 03期
关键词
Hilbert's integral inequality; weight function; H-L-P inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by introducing some parameters and using the way of weight function, a new integral inequality with a best constant factor is given, which is a relation between Hilbert's integral inequality and a Hilbert-type inequality. As applications, the equivalent form, the reverse forms and some particular inequalities are considered.
引用
收藏
页码:563 / 572
页数:10
相关论文
共 12 条
[1]  
Azar L. E., 2008, J INEQUAL APPL, V2008
[2]  
[葛晓葵 GE Xiaokui], 2007, [暨南大学学报. 自然科学与医学版, Journal of Jinan University], V28, P447
[3]  
Hardy G. H., 1952, MATH GAZ
[4]  
Kuang JC, 1996, INTRO REAL ANAL
[5]  
Kuang JCh., 2004, APPL INEQUALITIES
[6]   On inequalities of Hilbert's type [J].
Li, Yongjin ;
He, Bing .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 76 (01) :1-13
[7]  
Li Yongjin, INT J MATH MATH SOC, V2006, P1
[8]  
Mintrinovic D. S., 1991, INEQUALITIES INVOLVI
[9]  
[谢春娥 XIE Chune], 2007, [暨南大学学报. 自然科学与医学版, Journal of Jinan University], V28, P24
[10]  
YANG B. C., 2004, AUSTR J MATH ANAL AP, V1, P1