KNEADING THEORY AND ROTATION INTERVALS FOR A CLASS OF CIRCLE MAPS OF DEGREE-ONE

被引:14
作者
ALSEDA, L [1 ]
MANOSAS, F [1 ]
机构
[1] UNIV POLITECN CATALUNYA,ESCUELA TECH SUPER ARQUITECTURA VALLES,DEPT MATEMAT APLICADA,TERRASSA,SPAIN
关键词
D O I
10.1088/0951-7715/3/2/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors give a kneading theory for the class of continuous maps of the circle of degree with a single maximum and a single minimum. For a map of this class they characterise the set of itineraries depending on the rotation interval. From this result they obtain lower and upper bounds of the topological entropy and of the number of periodic orbits of each period. These lower bounds appear to be valid for a general continuous map of the circle of degree one. © 1990 IOP Publishing Ltd.
引用
收藏
页码:413 / 452
页数:40
相关论文
共 22 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]   TWIST PERIODIC-ORBITS AND TOPOLOGICAL-ENTROPY FOR CONTINUOUS-MAPS OF THE CIRCLE OF DEGREE ONE WHICH HAVE A FIXED-POINT [J].
ALSEDA, L ;
LLIBRE, J ;
MISIUREWICZ, M ;
SIMO, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1985, 5 :501-517
[3]  
ALSEDA L, 1982, COLLOQ INT CNRS, V332, P177
[4]  
ALSEDA L, 1989, P EUROPEAN C ITERATI, P113
[5]   lower bounds of the topological entropy for continuous maps of the circle of degree one [J].
Alseda, Lluis ;
Llibre, Jaume ;
Manosas, Francesc ;
Misiurewicz, Michat .
NONLINEARITY, 1988, 1 (03) :463-479
[6]  
[Anonymous], 1971, SCI PUBL MATH
[7]  
BAMON R, 1986, INVENT MATH, V8, P257
[8]   THE SPEED INTERVAL - A ROTATION ALGORITHM FOR ENDOMORPHISMS OF THE CIRCLE [J].
BARKMEIJER, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1988, 8 :17-33
[9]  
BERNHARDT C, 1982, P LOND MATH SOC, V45, P258
[10]  
Block L., 1980, GLOBAL THEORY DYNAMI, V819, P18, DOI 10.1007/BFb0086977