ASYMPTOTIC ENUMERATION OF LATIN RECTANGLES

被引:36
作者
GODSIL, CD
MCKAY, BD
机构
[1] SIMON FRASER UNIV,BURNABY V5A 1S6,BC,CANADA
[2] AUSTRALIAN NATL UNIV,DEPT COMP SCI,CANBERRA,ACT 2601,AUSTRALIA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0095-8956(90)90128-M
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A k × n Latin rectangle is a k × n matrix with entries from {1,2, ..., n} such that no entry occurs more than once in any row or column. Equivalently, it is an ordered set of k disjoint perfect matchings of Kn,n. We prove that the number of k × n Latin rectangles is asymptotically (n!)( n(n-1)⋯(n-k+1) nkn(1- k n)- n 2e- k 2 as n → ∞ with k = o(n 6 7). This improves substantially on previous work by Erdo{combining double acute accent}s and Kaplansky, Yamamoto, and Stein. We also derive an asymptotic approximation to the generalised ménage numbers, and establish a number of results on entries in random Latin rectangles. © 1990.
引用
收藏
页码:19 / 44
页数:26
相关论文
共 36 条
[31]  
Wormald N.C, 1978, THESIS U NEWCASTLE
[32]  
Yamamoto K., 1969, RES REP SCI DIV TOKY, V19, P86
[33]  
Yamamoto K., 1956, MEM FAC SCI KYUSH AM, V10, P1, DOI DOI 10.2206/KYUSHUMFS.10.1
[34]  
Yamamoto K, 1953, J MATH SOC JAPAN, V5, p[13, 3]
[35]  
YAMAMOTO K, 1949, J MATH SOC JAPAN, V2, P226
[36]  
YAMAMOTO K, 1951, JAPAN J MATH, V21