ASYMPTOTIC ENUMERATION OF LATIN RECTANGLES

被引:36
作者
GODSIL, CD
MCKAY, BD
机构
[1] SIMON FRASER UNIV,BURNABY V5A 1S6,BC,CANADA
[2] AUSTRALIAN NATL UNIV,DEPT COMP SCI,CANBERRA,ACT 2601,AUSTRALIA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0095-8956(90)90128-M
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A k × n Latin rectangle is a k × n matrix with entries from {1,2, ..., n} such that no entry occurs more than once in any row or column. Equivalently, it is an ordered set of k disjoint perfect matchings of Kn,n. We prove that the number of k × n Latin rectangles is asymptotically (n!)( n(n-1)⋯(n-k+1) nkn(1- k n)- n 2e- k 2 as n → ∞ with k = o(n 6 7). This improves substantially on previous work by Erdo{combining double acute accent}s and Kaplansky, Yamamoto, and Stein. We also derive an asymptotic approximation to the generalised ménage numbers, and establish a number of results on entries in random Latin rectangles. © 1990.
引用
收藏
页码:19 / 44
页数:26
相关论文
共 36 条
[1]   COMBINATORIAL APPLICATIONS OF HERMITE-POLYNOMIALS [J].
AZOR, R ;
GILLIS, J ;
VICTOR, JD .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (05) :879-890
[2]  
Biggs N., 1974, ALGEBRAIC GRAPH THEO
[3]  
BJORSTAD P, 1981, BIT, V21, P56, DOI 10.1007/BF01934071
[4]   THE NUMBER OF MATCHINGS IN RANDOM REGULAR GRAPHS AND BIPARTITE GRAPHS [J].
BOLLOBAS, B ;
MCKAY, BD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (01) :80-91
[5]  
CAMERON PJ, 1976, LONDON MATH SOC LECT, V23
[6]  
EGORITSJEV GP, 1980, 13M LV KIR I PHYS PR
[7]  
ERDOS P, 1946, AM J MATH, V68, P230
[8]   DERANGEMENTS AND LAGUERRE POLYNOMIALS [J].
EVEN, S ;
GILLIS, J .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :135-143
[9]  
Falikman D., 1981, MAT ZAMETKI, V29, P931
[10]   COUNTING LATIN RECTANGLES [J].
GESSEL, IM .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 16 (01) :79-82