Binomial options pricing has no closed-form solution

被引:4
作者
Georgiadis, Evangelos [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
关键词
D O I
10.3233/AF-2011-003
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We set a lower bound on the complexity of options pricing formulae in the lattice metric by proving that no general explicit or closed form (hypergeometric) expression for pricing vanilla European call and put options exists when employing the binomial lattice approach. Our proof follows from Gosper's algorithm.
引用
收藏
页码:13 / 16
页数:4
相关论文
共 9 条
[1]  
[Anonymous], 1887, COMPTES RENDUS LACAD
[2]  
Costabile M., 2002, DECISIONS EC FINANCE, V25, P111
[3]   OPTION PRICING - SIMPLIFIED APPROACH [J].
COX, JC ;
ROSS, SA ;
RUBINSTEIN, M .
JOURNAL OF FINANCIAL ECONOMICS, 1979, 7 (03) :229-263
[4]   Linear-time option pricing algorithms by combinatorics [J].
Dai, Tian-Shyr ;
Liu, Li-Min ;
Lyuu, Yuh-Dauh .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (09) :2142-2157
[6]  
Lyuu Y.-D., 1998, J DERIV, V5, P68, DOI 10.3905/jod.1998.407999
[7]   A Mathematica version of Zeilberger's algorithm for proving binomial coefficient identities [J].
Paule, P ;
Schorn, M .
JOURNAL OF SYMBOLIC COMPUTATION, 1995, 20 (5-6) :673-698
[8]   Lost (and found) in translation:: Andre's actual method and its application to the generalized ballot problem [J].
Renault, Marc .
AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (04) :358-363
[9]  
Zeilberger D., 1991, SIGSAM Bulletin, V25, P4, DOI 10.1145/122514.122515