ON SURFACES IN THE 3-DIMENSIONAL LORENTZ-MINKOWSKI SPACE

被引:38
|
作者
FERRANDEZ, A
LUCAS, P
机构
[1] Universidad de Murcia, Espinardo, Murcia
关键词
D O I
10.2140/pjm.1992.152.93
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M(s)2 be a surface in the 3-dimensional Lorentz-Minkowski space L3 and denote by H its mean curvature vector field. This paper locally classifies those surfaces verifying the condition DELTA-H = lambda-H, where lambda is a real constant. The classification is done by proving that M(s)2 has zero mean curvature everywhere or it is isoparametric, i.e., its shape operator has constant characteristic polynomial.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 50 条
  • [21] Periodic maximal surfaces in the Lorentz-Minkowski space L3
    Fernandez, Isabel
    Lopez, Francisco J.
    MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (03) : 573 - 601
  • [22] DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE
    Lopez, Rafael
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2014, 7 (01): : 44 - 107
  • [23] Isometric Generalized Maximal Surfaces in Lorentz-Minkowski Space
    Araujo, Henrique
    RESULTS IN MATHEMATICS, 2009, 56 (1-4) : 83 - 90
  • [24] Bjorling problem for maximal surfaces in Lorentz-Minkowski space
    Alías, LJ
    Chaves, RMB
    Mira, P
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 134 : 289 - 316
  • [25] Weierstrass representation for lightlike surfaces in Lorentz-Minkowski 3-space
    Devald, Davor
    Sipus, Zeljka Milin
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 166
  • [26] Geometric properties of timelike surfaces in Lorentz-Minkowski 3-space
    Mazlum, Sumeyye Gur
    FILOMAT, 2023, 37 (17) : 5735 - 5749
  • [27] GENERALIZED MAXIMAL SURFACES IN LORENTZ-MINKOWSKI SPACE L3
    ESTUDILLO, FJM
    ROMERO, A
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 : 515 - 524
  • [28] Enneper representation of minimal surfaces in the three-dimensional Lorentz-Minkowski space
    Cintra, Adriana A.
    Onnis, Irene I.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (01) : 21 - 39
  • [29] On the curvatures of timelike circular surfaces in Lorentz-Minkowski space
    Li, Jing
    Yang, Zhichao
    Li, Yanlin
    Abdel-Baky, R. A.
    Saad, M. Khalifa
    FILOMAT, 2024, 38 (04) : 1423 - 1437
  • [30] MINDING ISOMETRIES OF RULED SURFACES IN LORENTZ-MINKOWSKI SPACE
    Gajcic, Ljiljana Primorac
    Sipus, Zeljka Milin
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2019, 23 (538): : 107 - 122