LIBRATIONS OF CENTRAL CONFIGURATIONS AND BRAIDED SATURN RINGS

被引:22
作者
Meyer, Kenneth R. [1 ]
Schmidt, Dieter S. [2 ]
机构
[1] Univ Cincinnati, Inst Dynam, Dept Math, Cincinnati, OH 45221 USA
[2] Univ Cincinnati, Dept Comp Sci, Inst Dynam, Cincinnati, OH 45221 USA
基金
美国国家科学基金会;
关键词
Celestial Mechanics; N-body problem; periodic solutions;
D O I
10.1007/BF00692516
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We give a simple mathematical model for braided rings of a planet based on Maxwell's model for the rings of Saturn.
引用
收藏
页码:289 / 303
页数:15
相关论文
共 15 条
[1]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[2]   CLASSICAL PERIODIC-SOLUTIONS OF THE EQUAL-MASS 2N-BODY PROBLEM, 2N-ION PROBLEM AND THE N-ELECTRON ATOM PROBLEM [J].
DAVIES, I ;
TRUMAN, A ;
WILLIAMS, D .
PHYSICS LETTERS A, 1983, 99 (01) :15-18
[3]  
DAVIES I, CLASSICAL PERI UNPUB
[4]  
Deprit A., 1969, Celestial Mechanics, V1, P12, DOI 10.1007/BF01230629
[5]  
Guillemin V., 1984, SYMPLECTIC TECHNIQUE
[6]   THE PRODUCTION OF BRAIDS IN SATURNS F-RING [J].
LISSAUER, JJ ;
PEALE, SJ .
ICARUS, 1986, 67 (03) :358-374
[7]  
Maxwell JC., 1859, STABILITY MOTION SAT
[8]  
Meyer K. R., 1973, DYNAMICAL SYSTEMS, P259
[9]   HAMILTONIAN-SYSTEMS WITH A DISCRETE SYMMETRY [J].
MEYER, KR .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 41 (02) :228-238
[10]  
MEYER KR, 1991, INTRO HAMILTONIAN DY