A NOTE ON SEQUENCE-COVERING π-IMAGES OF METRIC SPACES

被引:0
|
作者
Li, Zhaowen [1 ]
Xie, Tusheng [2 ]
机构
[1] Guangxi Univ Nationalities, Coll Math & Comp Sci, Nanning 530006, Guangxi, Peoples R China
[2] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
来源
MATEMATICKI VESNIK | 2012年 / 64卷 / 04期
基金
中国国家自然科学基金;
关键词
Sequence-covering mappings; pi-mappings; cs-covers; sn-covers; sigma-strong networks; Cauchy sn-symmetric spaces;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that a space is a sequence-covering pi-image of a metric space if and only if it has a sigma-strong network consisting of cs-covers (or sn-covers) if and only if it is a Cauchy sn-symmetric space.
引用
收藏
页码:326 / 329
页数:4
相关论文
共 23 条
  • [1] On sequence-covering near-compact images of metric spaces
    Ling, Xuewei
    Lin, Shou
    TOPOLOGY AND ITS APPLICATIONS, 2021, 301
  • [2] A note on sequence-covering mappings
    Shou Lin
    Acta Mathematica Hungarica, 2005, 107 : 187 - 191
  • [3] A note on sequence-covering mappings
    Lin, S
    ACTA MATHEMATICA HUNGARICA, 2005, 107 (03) : 187 - 191
  • [4] CONVERGENT-SEQUENCE SPACES AND SEQUENCE-COVERING MAPPINGS
    Lin, Shou
    Li, Kedian
    Ge, Ying
    HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (04): : 1367 - 1384
  • [5] ON PSEUDO-SEQUENCE-COVERING pi IMAGES OF LOCALLY SEPARABLE METRIC SPACES
    Xia, Shengxiang
    MATEMATICKI VESNIK, 2007, 59 (1-2): : 57 - 64
  • [6] On sequence-covering strong s-mappings
    Li, JJ
    Jiang, SL
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (10) : 1297 - 1301
  • [7] Point-regular covers and sequence-covering compact mappings
    Lin, Shou
    Ling, Xuewei
    Ge, Ying
    TOPOLOGY AND ITS APPLICATIONS, 2020, 271
  • [8] CLOSED MAPPINGS, BOUNDARY-COMPACT MAPPINGS AND SEQUENCE-COVERING MAPPINGS
    Lin, Shou
    Cai, Zhangyong
    HOUSTON JOURNAL OF MATHEMATICS, 2016, 42 (03): : 1059 - 1078
  • [9] Recent Progress on Point-Countable Covers and Sequence-Covering Mappings
    Lin, Shou
    Zhang, Jing
    AXIOMS, 2024, 13 (10)
  • [10] Around quotient compact images of metric spaces, and symmetric spaces
    Tanaka, Y.
    Ge, Y.
    HOUSTON JOURNAL OF MATHEMATICS, 2006, 32 (01): : 99 - 117