THE SEMIRING VARIETY GENERATED BY ANY FINITE NUMBER OF FINITE FIELDS AND DISTRIBUTIVE LATTICES

被引:0
作者
Shao, Yong [1 ]
Ren, Miaomiao [1 ]
Crvenkovic, Sinisa [2 ]
Mitrovic, Melanija [3 ]
机构
[1] Northwest Univ, Sch Math, Xian, Peoples R China
[2] Univ Novi Sad, Dept Math & Informat, Novi Sad, Serbia
[3] Univ Nis, Fac Mech Engn, Nish, Serbia
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2015年 / 98卷 / 112期
关键词
finite field; distributive lattice; subdirectly irreducible; hereditarily finitely based; variety;
D O I
10.2298/PIM150404026S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the semiring variety V generated by any finite number of finite fields F-1,..., F-k and two-element distributive lattice B-2, i.e., V = HSP{B-2, F-1,..., F-k}. It is proved that V is hereditarily finitely based, and that, up to isomorphism, B-2 and all subfields of F-1,..., Fk are the only subdirectly irreducible semirings in V.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 25 条
[1]   INCIDENCE SEMIRINGS OF GRAPHS AND VISIBLE BASES [J].
Abawajy, J. ;
Kelarev, A. V. ;
Miller, M. ;
Ryan, J. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (03) :451-459
[2]  
Abawajy J, 2013, HOUSTON J MATH, V39, P1083
[3]   Centroid sets with largest weight in Munn semirings for data mining applications [J].
Abawajy, J. ;
Kelarev, A. V. ;
Zeleznikow, J. .
SEMIGROUP FORUM, 2013, 87 (03) :617-626
[4]  
Burris S., 1991, International Journal of Algebra and Computation, V1, P353, DOI 10.1142/S0218196791000249
[5]  
Dedekind R., 1894, PG LEJEUNE DIRIC S11, V4
[6]   Equivalence between varieties of square root rings and Boolean algebras with a distinguished automorphism [J].
Diaz Varela, J. Patricio .
JOURNAL OF ALGEBRA, 2006, 299 (01) :190-197
[7]   OPTIMIZATION OF MATRIX SEMIRINGS FOR CLASSIFICATION SYSTEMS [J].
Gao, D. Y. ;
Kelarev, A. V. ;
Yearwood, J. L. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (03) :492-503
[8]   A characterization of semirings which are subdirect products of a distributive lattice and a ring [J].
Ghosh, S .
SEMIGROUP FORUM, 1999, 59 (01) :106-120
[9]  
Golan J.S., 2003, SEMIRINGS AFFINE EQU
[10]  
Golan JS, 1999, POWER ALGEBRAS SEMIR