On linear conflict-controlled processes with fractional derivatives

被引:0
作者
Chikrii, A. A. [1 ,2 ]
Matichin, I. I. [1 ]
机构
[1] NAS Ukraine, Glushkov Inst Cybernet, Kiev, Ukraine
[2] NAS Ukraine, Glushkov Inst Cybernet, Physicomath Sci, Kiev, Ukraine
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2011年 / 17卷 / 02期
关键词
game problem; fractional derivative; set-valued mapping; oscillatory process; fractional relaxation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A control problem is considered for quasilinear processes with fractional derivatives under counteraction. Hilfer fractional derivatives are studied, which, in particular, include the classical Riemann-Liouville fractional derivatives and Caputo regularized derivatives. A representation for solutions of such systems is presented, which allows to obtain, using the method of resolving functions, a guaranteed result for the approach of a trajectory to a given target set. Qualitative results are illustrated by an example with the Bagley-Torvik equation, which describes damped oscillations with fractional damping, and by a game problem with the equation of fractional relaxation.
引用
收藏
页码:256 / 270
页数:15
相关论文
共 16 条
  • [1] Aubin J.P., 1990, SET-VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
  • [2] LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2
    CAPUTO, M
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05): : 529 - &
  • [3] Chikrii A., 1997, CONFLICT CONTROLLED, DOI [10.1007/978-94-017-1135-7, DOI 10.1007/978-94-017-1135-7]
  • [4] Game Problems for Fractional-Order Systems
    Chikrii, Arkadii
    Matychyn, Ivan
    [J]. NEW TRENDS IN NANOTECHNOLOGY AND FRACTIONAL CALCULUS APPLICATIONS, 2010, : 233 - 241
  • [5] Optimization of game interaction of fractional-order controlled systems
    Chikrii, Arkadii A.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (01) : 39 - 72
  • [6] Chikrii AA, 2008, SPRINGER SER OPTIM A, V17, P349
  • [7] Draganescu GE, 2005, J OPTOELECTRON ADV M, V7, P877
  • [8] Experimental evidence for fractional time evolution in glass forming materials
    Hilfer, R
    [J]. CHEMICAL PHYSICS, 2002, 284 (1-2) : 399 - 408
  • [9] Hilfer R., 2000, APPL FRACTIONAL CALC, DOI DOI 10.1142/3779
  • [10] Kilbas A. A, 2006, THEORY APPL FRACTION