RANDOM INFINITE-VOLUME GIBBS-STATES FOR THE CURIE-WEISS RANDOM FIELD ISING-MODEL

被引:27
作者
DEMATOS, JMGA [1 ]
PATRICK, AE [1 ]
ZAGREBNOV, VA [1 ]
机构
[1] JOINT NUCL RES INST,THEORET PHYS LAB,DUBNA 141980,USSR
关键词
RANDOM-FIELD; ISING MODEL; GIBBS STATES; SELF-AVERAGING;
D O I
10.1007/BF01060064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An approach to the definition of infinite-volume Gibbs states for the (quenched) random-field Ising model is considered in the case of a Curie-Weiss ferromagnet. It turns out that these states are random quasi-free measures. They are random convex linear combinations of the free product-measures "shifted" by the corresponding effective mean fields. The conditional self-averaging property of the magnetization related to this randomness is also discussed.
引用
收藏
页码:139 / 164
页数:26
相关论文
共 28 条
[1]   ROUNDING EFFECTS OF QUENCHED RANDOMNESS ON 1ST-ORDER PHASE-TRANSITIONS [J].
AIZENMAN, M ;
WEHR, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (03) :489-528
[2]   A GENERALIZED QUASIAVERAGE APPROACH TO THE DESCRIPTION OF THE LIMIT STATES OF THE N-VECTOR CURIE-WEISS FERROMAGNET [J].
ANGELESCU, N ;
ZAGREBNOV, VA .
JOURNAL OF STATISTICAL PHYSICS, 1985, 41 (1-2) :323-334
[3]  
ANGELESCU N, 4 P VILN C PROB THEO, V1, P69
[4]   DESCRIPTION OF LIMIT GIBBS-STATES FOR CURIE-WEISS-ISING MODEL [J].
BRANKOV, IG ;
ZAGREBNOV, VA ;
TONCHEV, NS .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 66 (01) :72-80
[5]   FLUCTUATIONS IN THE CURIE-WEISS VERSION OF THE RANDOM FIELD ISING-MODEL [J].
DEMATOS, JMGA ;
PEREZ, JF .
JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) :587-608
[6]   PRESCRIBING A SYSTEM OF RANDOM VARIABLES BY CONDITIONAL DISTRIBUTIONS [J].
DOBRUSHIN, RL .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (03) :458-+
[7]  
Dobrusin RL., 1968, THEOR PROBAB APPL+, V13, P201
[8]   THE THERMODYNAMICS OF SITE-RANDOM MEAN-FIELD QUANTUM SPIN SYSTEMS [J].
DUFFIELD, NG ;
KUHN, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (21) :4643-4658
[9]  
Ellis R.S., 1985, ENTROPY LARGE DEVIAT
[10]  
FANNES M, 1980, J MATH PHYS, V21, P355, DOI 10.1063/1.524422