ON THE CONVERGENCE OF MONTE-CARLO MAXIMUM-LIKELIHOOD CALCULATIONS

被引:0
作者
GEYER, CJ
机构
来源
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL | 1994年 / 56卷 / 01期
关键词
ASYMPTOTIC NORMALITY; GIBBS SAMPLER; HYPOCONVERGENCE; MARKOV CHAIN; MAXIMUM LIKELIHOOD; METROPOLIS-HASTINGS ALGORITHM; MONTE CARLO; PROFILE LIKELIHOOD;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Monte Carlo maximum likelihood for normalized families of distributions can be used for an extremely broad class of models. Given any family {h(theta): theta is-an-element-of THETA} of non-negative integrable functions, maximum likelihood estimates in the family obtained by normalizing the functions to integrate to 1 can be approximated by Monte Carlo simulation, the only regularity conditions being a compactification of the parameter space such that the evaluation maps theta bar arrow pointing right h(theta)(x) remain continuous. Then with probability 1 the Monte Carlo approximant to the log-likelihood hypoconverges to the exact log-likelihood, its maximizer converges to the exact maximum likelihood estimate, approximations to profile likelihoods hypoconverge to the exact profile and level sets of the approximate likelihood (support regions) converge to the exact sets (in Painleve-Kuratowski set convergence). The same results hold when there are missing data if a Wald-type integrability condition is satisfied. Asymptotic normality of the Monte Carlo error and convergence of the Monte Carlo approximation to the observed Fisher information are also shown.
引用
收藏
页码:261 / 274
页数:14
相关论文
共 31 条
[1]  
Attouch H., 1984, VARIATIONAL CONVERGE
[2]  
Bahadur R.R., 1971, SOME LIMIT THEOREMS
[3]   A CHARACTERIZATION OF EPI-CONVERGENCE IN TERMS OF CONVERGENCE OF LEVEL SETS [J].
BEER, G ;
ROCKAFELLAR, RT ;
WETS, RJB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (03) :753-761
[4]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[5]   ASYMPTOTIC-BEHAVIOR OF THE GIBBS SAMPLER [J].
CHAN, KS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :320-326
[6]  
CHUNG KL, 1967, MARKOV CHAINS STATIO, P99
[7]  
EDWARDS AWF, 1972, LIKELH OOD
[8]  
GELFAND AE, 1991, IN PRESS CAN J STATI
[9]  
Geweke J. F., 1991, STAFF REP, DOI DOI 10.21034/SR.148
[10]  
Geyer C.J., 1992, STAT SCI, V7, P473, DOI 10.1214/ss/1177011137