RULED SURFACES WITH VANISHING 2ND GAUSSIAN CURVATURE

被引:26
作者
BLAIR, DE [1 ]
KOUFOGIORGOS, T [1 ]
机构
[1] UNIV IOANNINA,DEPT MATH,GR-45110 IOANNINA,GREECE
来源
MONATSHEFTE FUR MATHEMATIK | 1992年 / 113卷 / 03期
关键词
D O I
10.1007/BF01641765
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a surface free of points of vanishing Gaussian curvature in Euclidean space the second Gaussian curvature is defined formally. It is first pointed out that a minimal surface has vanishing second Gaussian curvature but that a surface with vanishing second Gaussian curvature need not be minimal. Ruled surfaces for which a linear combination of the second Gaussian curvature and the mean curvature is constant along the rulings are then studied. In particular the only ruled surface in Euclidean space with vanishing second Gaussian curvature is a piece of a helicoid.
引用
收藏
页码:177 / 181
页数:5
相关论文
共 4 条
[1]  
Berger M, 1988, DIFFERENTIAL GEOMETR
[2]   MINIMAL SURFACES OF SECOND FUNDAMENTAL FORM [J].
GLASSNER, E .
MONATSHEFTE FUR MATHEMATIK, 1974, 78 (03) :193-214
[3]   CHARACTERISTIC PROPERTY OF SPHERE [J].
KOUFOGIORGOS, T ;
HASANIS, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 67 (02) :303-305
[4]  
Struik D. J., 1961, DIFFERENTIAL GEOMETR