FINITENESS PROPERTIES OF CHEVALLEY GROUPS OVER F(q)[t]

被引:7
作者
Abramenko, Peter [1 ]
机构
[1] Univ Frankfurt, Fachbereich Math, D-60054 Frankfurt, Germany
关键词
D O I
10.1007/BF02772995
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple Chevalley group of rank n and Gamma = (G) under bar (F(q)([t]). Then the finiteness length of F shall be determined by studying the action of F on the Bruhat-Tits building X of (G) under bar (F(q)((1/t))). This is always possible provided that certain subcomplexes of t h e links of simplices in X axe spherical. As a consequence, one obtains that F is of type F(n-1) but not of type FP(n) if (G) under bar is of type A(n), B(n), C(n) or D(n) and q >= 2(2n-1).
引用
收藏
页码:203 / 223
页数:21
相关论文
共 28 条