The slip description of fluid flow past solid boundaries is reconsidered. We find that the traditional picture of fluid slip as a mean free path correction to hydrodynamics has to be revised whenever the particle scattering becomes close to specular. Then the microscopic slip length may diverge and it is the boundary's curvature which is decisive for the momentum transfer between fluid and wall. By explicitly considering surface roughness we can explain discrepancies between experimentally observed data and traditional slip theory.