Optimal imputation of missing data for estimation of population mean

被引:28
作者
Bhushan, Shashi [1 ]
Pandey, Abhay Pratap [2 ]
机构
[1] Dr Shakuntala Misra Natl Rehabil Univ, Dept Math & Stat, Lucknow 226017, Uttar Pradesh, India
[2] Babasaheb Bhimrao Ambedkar Univ, Dept Appl Stat, Lucknow 226025, Uttar Pradesh, India
关键词
Missing data; Imputation; Searls-type estimators;
D O I
10.1080/09720510.2016.1220099
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we have addressed the issue of optimality under imputation by using Searls (1964) idea. We have proposed three new Searls-type difference (STD) methods for imputation of missing data. The resultant STD estimators are better than the estimators proposed by Kadilar and Cingi (2008) and Diana and Perri (2010). An analytical comparison shows that the proposed optimal methods are always better that the respective regression methods of imputation. Theoretical results are supported by an empirical study.
引用
收藏
页码:755 / 766
页数:12
相关论文
共 19 条
[1]  
Diana G., 2007, METRON, V55, P99
[2]  
Diana G., 2003, STAT METHOD APPL-GER, V12, P41
[3]  
Diana G., 2007, COMMUNICATION STAT T, V39, P3245
[4]   On improvement in estimating the population mean in simple random sampling [J].
Gupta, Sat ;
Shabbir, Javid .
JOURNAL OF APPLIED STATISTICS, 2008, 35 (05) :559-566
[5]   Distinguishing 'missing at random'' and ''missing completely at random'' [J].
Heitjan, DF ;
Basu, S .
AMERICAN STATISTICIAN, 1996, 50 (03) :207-213
[6]   Ratio estimators in simple random sampling [J].
Kadilar, C ;
Cingi, H .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 151 (03) :893-902
[7]   Estimators for the population mean in the case of missing data [J].
Kadilar, Cem ;
Cingi, Hulya .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (14) :2226-2236
[8]  
Murthy MN, 1977, SAMPLING THEORY METH
[9]  
Reddy, 1978, SANKHYA C, V40, P29
[10]  
RUBIN DB, 1976, BIOMETRIKA, V63, P581, DOI 10.1093/biomet/63.3.581