SOME RESULTS ON NEAR-RINGS WITH GENERALIZED DERIVATIONS

被引:2
|
作者
Golbasi, Oznur [1 ]
机构
[1] Cumhuriyet Univ, Fac Arts & Sci, Dept Math, Sivas, Turkey
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2005年 / 54卷 / 02期
关键词
Prime Near-Ring; Derivation; Generalized Derivation; Homomorphism; Anti-homomorphism;
D O I
10.1501/Commua1_0000000327
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N be a prime right near-ring with multiplicative center Z, f : R -> R a generalized derivation associated with derivation d. The following results are proved: (i) If f(2) (N) = 0 then f = 0. (ii) If f(N) subset of Z then N is commutative ring. (iii) f(xy) = f(x)f(y) or f(xy) = f(y)f(x) for all x, y is an element of N then d = 0.
引用
收藏
页码:21 / 26
页数:6
相关论文
共 50 条
  • [31] Some Conditions Under Which Near-Rings Are Rings
    Boua, A.
    Oukhtite, L.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (03) : 325 - 331
  • [32] Generalized Derivations and Generalized Jordan Derivations of Quaternion Rings
    H. Ghahramani
    M. N. Ghosseiriand
    L. Heidari Zadeh
    Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 305 - 308
  • [33] Generalized Derivations and Generalized Jordan Derivations of Quaternion Rings
    Ghahramani, H.
    Ghosseiriand, M. N.
    Zadeh, L. Heidari
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (01): : 305 - 308
  • [34] Some commutativity theorems for rings with involution involving generalized derivations
    Idrissi, My Abdallah
    Oukhtite, Lahcen
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (01)
  • [35] Some identities involving generalized (α, β)-derivations in prime and semiprime rings
    Bera, Manami
    Dhara, Basudeb
    Kar, Sukhendu
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (04)
  • [36] On Semiprime Rings with Generalized Derivations
    Ashraf, Mohammad
    Nadeem-ur-Rehman
    Ali, Shakir
    Mozumder, Muzibur Rahman
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2010, 28 (02): : 25 - 32
  • [37] Generalized Derivations on *-prime Rings
    Ashraf, Mohammad
    Jamal, Malik Rashid
    KYUNGPOOK MATHEMATICAL JOURNAL, 2018, 58 (03): : 481 - 488
  • [38] COMMUTATIVITY OF PRIME GAMMA NEAR RINGS WITH GENERALIZED DERIVATIONS
    Markos, Adnew
    Miyan, Phool
    Alemayehu, Getinet
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2022, 40 (5-6): : 915 - 923
  • [39] On generalized (α, β)-derivations of semiprime rings
    Ali, Faisal
    Chaudhry, Muhammad Anwar
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (03) : 383 - 393
  • [40] SOME COMMUTATIVITY THEOREMS FOR NEAR-RINGS WITH LEFT MULTIPLIERS
    Boua, A.
    Abdelwanis, A. Y.
    Chillali, A.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (02): : 205 - 216