JULIA SETS FOR CERTAIN RATIONAL FUNCTIONS

被引:1
作者
KINNEY, JR
PITCHER, TS
机构
[1] UNIV HAWAII,DEPT MATH,HONOLULU,HI 96720
[2] MICHIGAN STATE UNIV,DEPT MATH,E LANSING,MI 48824
关键词
D O I
10.1016/0196-8858(88)90007-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:51 / 55
页数:5
相关论文
共 50 条
  • [41] Porosity of Julia sets of non-recurrent and parabolic Collet-Eckmann rational functions
    Przytycki, F
    Urbanski, M
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2001, 26 (01) : 125 - 154
  • [42] Density of hyperbolicity for rational maps with Cantor Julia sets
    Peng, Wenjuan
    Yin, Yongcheng
    Zhai, Yu
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 1711 - 1726
  • [43] Rational maps whose Julia sets are Cantor circles
    Qiu, Weiyuan
    Yang, Fei
    Yin, Yongcheng
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 499 - 529
  • [44] Sierpiński Curve Julia Sets of Rational Maps
    Norbert Steinmetz
    Computational Methods and Function Theory, 2006, 6 (2) : 317 - 327
  • [45] Rational maps with generalized Sierpinski gasket Julia sets
    Devaney, Robert L.
    Rocha, Monica Moreno
    Siegmund, Stefan
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (01) : 11 - 27
  • [46] Julia sets are quasicircles for rational maps of degree N
    Al-Salami, Hassanein Q.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (07) : 1421 - 1429
  • [47] LIMITING JULIA SETS FOR SINGULARLY PERTURBED RATIONAL MAPS
    Morabito, Mark
    Devaney, Robert L.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (10): : 3175 - 3181
  • [48] Rational maps whose Julia sets are quasi circles
    Al-Salami, Hassanein Q.
    Al-shara, Iftichar
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 2041 - 2048
  • [49] Connectivity of the Julia sets of singularly perturbed rational maps
    Fu, Jianxun
    Zhang, Yanhua
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (03):
  • [50] SIERPINSKI CURVE JULIA SETS FOR QUADRATIC RATIONAL MAPS
    Devaney, Robert L.
    Fagella, Nuria
    Garijo, Antonio
    Jarque, Xavier
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (01) : 3 - 22