A BAR OPERATOR FOR INVOLUTIONS IN A COXETER GROUP

被引:0
|
作者
Lusztig, G. [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
来源
BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES | 2012年 / 7卷 / 03期
基金
美国国家科学基金会;
关键词
Hecke algebra; Coxeter group; involution;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:355 / 404
页数:50
相关论文
共 50 条
  • [1] Involutions in Coxeter groups
    Reimann, Anna
    Rego, Yuri Santos
    Schwer, Petra
    Varghese, Olga
    ALGEBRAS AND REPRESENTATION THEORY, 2025,
  • [2] Finite Coxeter groups: involutions and cubes
    Serre, Jean-Pierre
    ENSEIGNEMENT MATHEMATIQUE, 2022, 68 (1-2): : 99 - 133
  • [3] Involutions in Coxeter groupsInvolutions in Coxeter groupsA. Reimann et al.
    Anna Reimann
    Yuri Santos Rego
    Petra Schwer
    Olga Varghese
    Algebras and Representation Theory, 2025, 28 (2) : 647 - 667
  • [4] Lengths of involutions in finite Coxeter groups
    Hart, Sarah B.
    Rowley, Peter J.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (02)
  • [5] A word property for twisted involutions in Coxeter groups
    Hansson, Mikael
    Hultman, Axel
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 161 : 220 - 235
  • [6] RECOGNIZING RIGHT-ANGLED COXETER GROUPS USING INVOLUTIONS
    Cunningham, Charles
    Eisenberg, Andy
    Piggott, Adam
    Ruane, Kim
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 284 (01) : 41 - 77
  • [7] Riordan group involutions
    Cheon, Gi-Sang
    Kim, Hana
    Shapiro, Louis W.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) : 941 - 952
  • [8] On pseudo-involutions, involutions and quasi-involutions in the group of almost Riordan arrays
    Barry, Paul
    Pantelidis, Nikolaos
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (02) : 399 - 423
  • [9] On pseudo-involutions, involutions and quasi-involutions in the group of almost Riordan arrays
    Paul Barry
    Nikolaos Pantelidis
    Journal of Algebraic Combinatorics, 2021, 54 : 399 - 423
  • [10] The sorting order on a Coxeter group
    Armstrong, Drew
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (08) : 1285 - 1305