On Lie ideals with generalized (alpha, alpha)-derivations in prime rings

被引:0
作者
Tiwari, S. K. [1 ]
Sharma, R. K. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, Hauz Khas, Delhi 110016, India
关键词
Prime ring; Generalized; (alpha; alpha)-derivation; Automorphism; Square closed Lie ideal;
D O I
10.1007/s12215-018-0329-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring and a an automorphism on R. An additive mapping F on R is said to be a generalized (alpha,alpha)-derivation on R if there exists an (alpha,alpha)-derivation d on R such that F(xy) = F(x)alpha(y) + a(x) d(y) holds for all x, y is an element of R. In this paper our main objective is to study the following identities: (i) G(xy) +/- F(x) F(y) is an element of Z(R); (ii) G(xy) +/- F(x) F(y) +/- a(yx) = 0; (iii) G(xy) +/- F(x) F(y) +/- a(xy) is an element of Z(R); (iv) G(xy) +/- F(x) F(y) +/- a([ x, y]) = 0; (v) G(xy) +/- F(x) F(y) +/- alpha(x o y) = 0; for all x, y in some suitable subset of R, where G and F are two generalized (alpha,alpha)-derivations on R
引用
收藏
页码:493 / 499
页数:7
相关论文
共 13 条
[1]   GENERALIZED DERIVATIONS ON IDEALS OF PRIME RINGS [J].
Albas, Emine .
MISKOLC MATHEMATICAL NOTES, 2013, 14 (01) :3-9
[2]  
Ali S, 2012, CONTEMPORARY RING THEORY 2011, P135
[3]  
Ashraf M., 2001, E W J MATH, V1, P87
[4]  
Ashraf M., 2007, SE ASIAN B MATH, V31, P415
[5]  
Atteya M. J., 2010, INT J ALGEBRA, V4, P591
[6]   LIE IDEALS AND DERIVATIONS OF PRIME-RINGS [J].
BERGEN, J ;
HERSTEIN, IN ;
KERR, JW .
JOURNAL OF ALGEBRA, 1981, 71 (01) :259-267
[7]  
Brear M., 1991, GLASGOW MATH J, V33, P89, DOI DOI 10.1017/S0017089500008077
[8]   Generalized derivations acting as a homomorphism or anti-homomorphism in semiprime rings [J].
Basudeb Dhara .
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2012, 53 (1) :203-209
[9]   On multiplicative (generalized)-derivations in prime and semiprime rings [J].
Dhara, Basudeb ;
Ali, Shakir .
AEQUATIONES MATHEMATICAE, 2013, 86 (1-2) :65-79
[10]   On Generalized (α, β)-Derivations in Prime Rings [J].
Marubayashi, Hidetoshi ;
Ashraf, Mohammad ;
Rehman, Nadeem-ur ;
Ali, Shakir .
ALGEBRA COLLOQUIUM, 2010, 17 :865-874