ON ORDERS OF OPTIMAL NORMAL BASIS GENERATORS

被引:39
作者
GAO, SH [1 ]
VANSTONE, SA [1 ]
机构
[1] UNIV WATERLOO,DEPT COMBINATOR & OPTIMIZAT,WATERLOO,ON N2L 3G1,CANADA
关键词
FINITE FIELDS; PRIMITIVE ELEMENTS; NORMAL BASES;
D O I
10.2307/2153492
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give some experimental results on the multiplicative orders of optimal normal basis generators in F(2)n over F-2 for n less than or equal to 1200 whenever the complete factorization of 2(n) - 1 is known. Our results show that a subclass of optimal normal basis generators always have high multiplicative orders, at least O((2(n) - 1)/n), and are very often primitive. For a given optimal normal basis generator alpha in F(2)n and an arbitrary integer e, we show that alpha(e) can be computed in O(n . v(e)) bit operations, where v(e) is the number of 1's in the binary representation of e.
引用
收藏
页码:1227 / 1233
页数:7
相关论文
共 13 条
  • [1] Agnew G. B., 1991, Journal of Cryptology, V3, P63, DOI 10.1007/BF00196789
  • [2] AN IMPLEMENTATION OF ELLIPTIC CURVE CRYPTOSYSTEMS OVER F(2)155
    AGNEW, GB
    MULLIN, RC
    VANSTONE, SA
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1993, 11 (05) : 804 - 813
  • [3] BRICKELL EF, 1992, FAST EXPONENTATION P
  • [4] Brillhart J., 1988, CONT MATH, V22
  • [5] ON FAST MULTIPLICATION OF POLYNOMIALS OVER ARBITRARY ALGEBRAS
    CANTOR, DG
    KALTOFEN, E
    [J]. ACTA INFORMATICA, 1991, 28 (07) : 693 - 701
  • [6] Gao S., 1992, Designs, Codes and Cryptography, V2, P315, DOI 10.1007/BF00125200
  • [7] LEHMER DH, 1965, P LONDON MATH SOC A, V14, P183
  • [8] Lidl Rudolf, 1983, FINITE FIELDS
  • [9] MENEZES AJ, 1993, APPLICATIONS FINITE
  • [10] MULLIN RC, 1988, DISCRETE APPLIED MAT, V22, P149