Statistics and quantum maximum entropy principle

被引:0
作者
Trovato, M. [1 ]
Reggiani, L. [2 ,3 ]
机构
[1] Univ Catania, Dipartimento Matemat, Viale A Doria, I-95124 Catania, Italy
[2] Univ Salento, Dipartimento Ingn Innovazione, I-73100 Lecce, Italy
[3] Univ Salento, CNISM, I-73100 Lecce, Italy
来源
NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS | 2010年 / 33卷 / 01期
关键词
D O I
10.1393/ncc/i2010-10570-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the reduced Wigner formalism we consider a kinetic theory for a quantum gas. We introduce a set of generalized kinetic fields and obtain a hierarchy of Quantum Hydrodynamic (QHD) equations for the corresponding macroscopic variables. To close the QHD system a maximum entropy principle is asserted, and to explicitly incorporate particles indistinguishability a proper quantum entropy is analyzed in terms of the reduced density matrix. This approach implies a quantum generalization of the corresponding Lagrange multipliers. Quantum contributions are expressed in powers of h(2)
引用
收藏
页码:247 / 255
页数:9
相关论文
共 18 条
[1]   WIGNER DISTRIBUTION FUNCTION AND SECOND QUANTIZATION IN PHASE SPACE [J].
BRITTIN, WE ;
CHAPPELL, WR .
REVIEWS OF MODERN PHYSICS, 1962, 34 (04) :620-&
[2]   Quantum moment hydrodynamics and the entropy principle [J].
Degond, P ;
Ringhofer, C .
JOURNAL OF STATISTICAL PHYSICS, 2003, 112 (3-4) :587-628
[3]   One-dimensional Bose gases with N-body attractive interactions [J].
Fersino, E. ;
Mussardo, G. ;
Trombettoni, A. .
PHYSICAL REVIEW A, 2008, 77 (05)
[4]   DISTRIBUTION-FUNCTIONS IN PHYSICS - FUNDAMENTALS [J].
HILLERY, M ;
OCONNELL, RF ;
SCULLY, MO ;
WIGNER, EP .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 106 (03) :121-167
[5]  
Klimontovich Yu, 1998, KINETIC THEORY NONID
[6]  
Landau L. D., 1959, STAT PHYS, P154
[7]   Entropy and Wigner functions [J].
Manfredi, G ;
Feix, MR .
PHYSICAL REVIEW E, 2000, 62 (04) :4665-4674
[8]  
Muller I., 1998, RATIONAL EXTENDED TH, V37
[9]  
Parkins AS, 1998, PHYS REP, V303, P2
[10]   APPROXIMATION SCHEME FOR THE QUANTUM LIOUVILLE EQUATION USING PHASE-SPACE DISTRIBUTION-FUNCTIONS [J].
PLOSZAJCZAK, M ;
RHOADESBROWN, MJ .
PHYSICAL REVIEW LETTERS, 1985, 55 (02) :147-149