CONTINUOUS VOLTERRA-RUNGE-KUTTA METHODS FOR INTEGRAL-EQUATIONS WITH PURE DELAY

被引:10
作者
BADDOUR, N
BRUNNER, H
机构
[1] Dept. of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, A1C 5S7, Newfoundland
关键词
VOLTERRA INTEGRAL EQUATIONS WITH DELAY; COLLOCATION; CONTINUOUS RUNGE-KUTTA METHODS; SUPERCONVERGENCE;
D O I
10.1007/BF02243812
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the following we give an analysis of the local superconvergence properties of piecewise polynomial collocation methods and related continuous Runge-Kutta-type methods for Volterra integral equations with constant delay. We show in particular that (in contrast to delay differential equations) collocation at the Gauss points does not lead to higher-order convergence and thus m-stage Gauss-Runge-Kutta methods for delay Volterra equations do not possess the order p = 2m.
引用
收藏
页码:213 / 227
页数:15
相关论文
共 16 条
[1]  
ARNDT H, 1987, 4TH INT SEM NUMDIFF, V104, P19
[2]   R-K FORMULAS APPLIED TO VOLTERRA-EQUATIONS WITH DELAY [J].
BAKER, CTH ;
DERAKHSHAN, MS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 29 (03) :293-310
[3]  
Banas J., 1986, REND CIRC MAT PALERM, P82
[4]   ONE-STEP COLLOCATION FOR DELAY DIFFERENTIAL-EQUATIONS [J].
BELLEN, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 10 (03) :275-283
[5]  
BELLEN A, 1989, MATH COMPUT, V52, P49, DOI 10.1090/S0025-5718-1989-0971402-3
[6]  
BOWNDS JM, 1976, FUNKC EKVACIOJ-SER I, V19, P101
[7]   ITERATED COLLOCATION METHODS AND THEIR DISCRETIZATIONS FOR VOLTERRA INTEGRAL-EQUATIONS [J].
BRUNNER, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (06) :1132-1145
[8]  
BRUNNER H, 1986, NUMERICAL SOLUTION V, V3
[9]  
BRUNNER H, IN PRESS J COMPUT AP
[10]   NUMERICAL-SOLUTIONS OF VOLTERRA INTEGRAL-EQUATIONS WITH A SOLUTION DEPENDENT DELAY [J].
CAHLON, B ;
NACHMAN, LJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 112 (02) :541-562