LINEAR TIME ALGORITHM FOR DECIDING INTERVAL GRAPH ISOMORPHISM

被引:124
作者
LUEKER, GS [1 ]
BOOTH, KS [1 ]
机构
[1] UNIV WATERLOO, DEPT COMP SCI, WATERLOO N2L 3G1, ONTARIO, CANADA
关键词
chordal graphs; graph isomorphism algonthms; intersection graphs; interval graphs; polynomial reduclinhty; rigid clrcmt graphs;
D O I
10.1145/322123.322125
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A graph is an interval graph tf and only if each of Its verttces can be associated with an interval on the real hne m such a way that two vertices are adjacent m the graph exactly when the corresponding mtervals have a nonempty mtersectmn An effictent algonthrn for testing tsomorpinsm of interval graphs ts unplemented using a data structure called a PQ-tree. The algorithm runs m O(n + e) steps for graphs having n vemces and e edges It is shown that for a somewhat larger class of graphs, namely the chordal graphs, lsomorpinsm is as hard as for general graphs. © 1979, ACM. All rights reserved.
引用
收藏
页码:183 / 195
页数:13
相关论文
共 19 条
[1]  
Aho A. V., 1974, DESIGN ANAL COMPUTER
[2]  
[Anonymous], 1976, DISCRETE MATH MODELS
[3]  
BOOTH K, 1977, CS7704 U WAT DEP COM
[4]  
Booth K.S, 1975, THESIS U CALIFORNIA
[5]  
BOOTH KS, 1977, UCRL51953
[6]  
FISCHER M, COMMUNICATION
[7]   INCIDENCE MATRICES AND INTERVAL GRAPHS [J].
FULKERSON, DR ;
GROSS, OA .
PACIFIC JOURNAL OF MATHEMATICS, 1965, 15 (03) :835-+
[8]  
Gavril F., 1974, Journal of Combinatorial Theory, Series B, V16, P47, DOI 10.1016/0095-8956(74)90094-X
[9]  
Gavril F., 1972, SIAM Journal on Computing, V1, P180, DOI 10.1137/0201013
[10]  
HajuEs G., 1957, INT MATH NACHRICHTEN, V11, P65