WEIGHTED ORLICZ SPACE INTEGRAL-INEQUALITIES FOR THE HARDY-LITTLEWOOD MAXIMAL OPERATOR

被引:43
作者
BLOOM, S [1 ]
KERMAN, R [1 ]
机构
[1] BROCK UNIV,DEPT MATH,ST CATHARINES,ON LS2A1,CANADA
关键词
D O I
10.4064/sm-110-2-149-167
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Necessary and sufficient conditions are given for the Hardy-Littlewood maximal operator to be bounded on a weighted Orlicz space when the complementary Young function satisfies DELTA2. Such a growth condition is shown to be necessary for any weighted integral inequality to occur. Weak-type conditions are also investigated.
引用
收藏
页码:149 / 167
页数:19
相关论文
共 15 条
[1]   WEAK BOUNDS FOR THE MAXIMAL-FUNCTION IN WEIGHTED ORLICZ SPACES [J].
BAGBY, RJ .
STUDIA MATHEMATICA, 1990, 95 (03) :195-204
[2]  
Bary N. K., 1956, T MOSK MAT OBS, V5, P483
[3]   WEIGHTED L-PHI INTEGRAL-INEQUALITIES FOR OPERATORS OF HARDY TYPE [J].
BLOOM, S ;
KERMAN, R .
STUDIA MATHEMATICA, 1994, 110 (01) :35-52
[4]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[5]  
GOTATISHVILI AS, GENERAL WEAK TYPE ES
[6]  
GOTATISHVILI AS, WEIGHTED INEQUALITIE
[7]  
Kerman R. A., 1981, STUD MATH, V71, P277
[8]  
Kokilashvili V., 1991, WEIGHTED INEQUALITIE
[9]  
KRASNOSELSKII MA, 1961, CONVEX FUNCTIONS ORL
[10]   WEIGHTED NORM INEQUALITIES FOR HARDY MAXIMAL FUNCTION [J].
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 165 (MAR) :207-+