FINITE TIME BLOW UP OF SOLUTIONS FOR A STRONGLY DAMPED NONLINEAR KLEIN-GORDON EQUATION WITH VARIABLE EXPONENTS

被引:10
|
作者
Piskin, Erhan [1 ]
机构
[1] Dicle Univ, Dept Math, TR-21280 Diyarbakir, Turkey
来源
HONAM MATHEMATICAL JOURNAL | 2018年 / 40卷 / 04期
关键词
Finite time blow up; Klein-Gordon equation; Variable exponent;
D O I
10.5831/HMJ.2018.40.4.771
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper, we investigate a strongly damped nonlinear Klein-Gordon equation with nonlinearities of variable exponent type u(tt) - Delta u - Delta u(t) + m(2)u + vertical bar u(t)vertical bar(p(x)) (2)u(t) = vertical bar u vertical bar(q(x)) (2)u associated with initial and Dirichlet boundary conditions in a bounded domain. We obtain a nonexistence of solutions if variable exponents p (.), q (.) and initial data satisfy some conditions.
引用
收藏
页码:771 / 783
页数:13
相关论文
共 50 条
  • [41] Global existence and blow up of the solution for nonlinear Klein-Gordon equation with general power-type nonlinearities at three initial energy levels
    Luo, Yongbing
    Yang, Yanbing
    Ahmed, Md Salik
    Yu, Tao
    Zhang, Mingyou
    Wang, Ligang
    Xu, Huichao
    APPLIED NUMERICAL MATHEMATICS, 2019, 141 : 102 - 123
  • [42] Superluminal solutions to the Klein-Gordon equation and a causality problem
    Borghardt, AA
    Belogolovskii, MA
    Karpenko, DY
    PHYSICS LETTERS A, 2003, 318 (4-5) : 342 - 344
  • [43] Asymptotic behavior and finite time blow up for damped fourth order nonlinear evolution equation
    Han, Jiangbo
    Xu, Runzhang
    Yang, Yanbing
    ASYMPTOTIC ANALYSIS, 2021, 122 (3-4) : 349 - 369
  • [44] FINITE-DIFFERENCE METHOD OF SOLVING THE DARBOUX PROBLEM FOR THE NONLINEAR KLEIN-GORDON EQUATION
    Berikelashvili, G.
    Jokhadze, O.
    Kharibegashvili, S.
    Midodashvili, B.
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2009, 47 : 123 - 132
  • [45] GLOBAL EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR A KLEIN-GORDON EQUATION WITH EXPONENTIAL TYPE NONLINEAR TERM
    Taskesen, H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (03): : 669 - 676
  • [46] COMPACT DIFFERENCE SCHEMES FOR KLEIN-GORDON EQUATION WITH VARIABLE COEFFICIENTS
    Matus, Piotr P.
    Anh, Hoang T. K.
    DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2021, 65 (01): : 25 - 32
  • [47] On the Solitary Solutions for the Nonlinear Klein-Gordon Equation Coupled with Born-Infeld Theory
    Guo, Z.
    Zhang, X.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2022, 57 (03): : 145 - 156
  • [48] Sign-preserving functionals and blow-up to Klein-Gordon equation with arbitrary high energy
    Kutev, N.
    Kolkovska, N.
    Dimova, M.
    APPLICABLE ANALYSIS, 2016, 95 (04) : 860 - 873
  • [49] Klein-Gordon equation in curved space-time
    Lehn, R. D.
    Chabysheva, S. S.
    Hiller, J. R.
    EUROPEAN JOURNAL OF PHYSICS, 2018, 39 (04)
  • [50] Analytic Solutions of Klein-gordon Equation and Generalized Schrdinger Equation
    WU Jing_zhu
    数学季刊, 2003, (03) : 310 - 314