ON THE GENERALIZED L2 GALERKIN FINITE-ELEMENT METHOD FOR LINEAR HYPERBOLIC-EQUATIONS

被引:5
作者
BARYOSEPH, P [1 ]
ELATA, D [1 ]
ISRAELI, M [1 ]
机构
[1] TECHNION ISRAEL INST TECHNOL,FAC COMP SCI,IL-32000 HAIFA,ISRAEL
关键词
D O I
10.1002/nme.1620360408
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, a Von Neumann analysis of the generalized L2 Galerkin method is described. The analysis is carried out on a linear scalar hyperbolic equation. The analysis shows both qualitatively and quantitatively the stability, dissipation and dispersion of the standard space-time discontinuous Galerkin finite element method, and of the space-time discontinuous streamline upwind Petrov Galerkin (SUPG) method. In addition a new special non-dissipative non-dispersive scheme is presented.
引用
收藏
页码:679 / 694
页数:16
相关论文
共 8 条
  • [1] AN EFFICIENT L2 GALERKIN FINITE-ELEMENT METHOD FOR MULTIDIMENSIONAL NONLINEAR HYPERBOLIC SYSTEMS
    BARYOSEPH, P
    ELATA, D
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1990, 29 (06) : 1229 - 1245
  • [2] BARYOSEPH P, 1989, COMPUT MECH, V5, P145
  • [3] JOHNSON C, 1986, MATH COMPUT, V46, P1, DOI 10.1090/S0025-5718-1986-0815828-4
  • [4] JOHNSON C, 1984, COMPUT METHODS APPL, V54, P258
  • [5] Johnson C., 1987, NUMERICAL SOLUTION P
  • [6] Lapidus L, 1982, NUMERICAL SOLUTION P
  • [7] Lesaint P., 1974, PUBL SEM MATH INF RE
  • [8] REED WF, 1973, P C MATH MODELS COMP