LINEAR SKOROHOD STOCHASTIC DIFFERENTIAL-EQUATIONS

被引:25
作者
BUCKDAHN, R
机构
[1] Unter den Linden 6, Fachbereich Mathematik der Humboldt-Universität, Berlin
关键词
D O I
10.1007/BF01192163
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let sigma and b be bounded processes on the Wiener space (OMEGA, F, P), OMEGA = C([0, 1]), which are possibly anticipating the Brownian motion W(t)(omega) = omega(t), and let eta be a bounded random variable. We deduce the existence and uniqueness of a solution X for the linear equation with Skorohod integral X(t) = eta + integral 0t sigma-sX(s)dW(s) + integral 0t b(s)X(s)ds, t is-an-element-of [0, 1], under rather weak assumptions on sigma and no additional requirement on b and eta. The description of the solution X requires to study the family {T(t), t is-an-element-of [0, 1]} of transformations T(t) of OMEGA into itself associated to (1) by the equation T(t) = omega + integral 0t sigma-s(T(s)omega)ds, omega is-an-element-of OMEGA, t is-an-element-of [0, 1].
引用
收藏
页码:223 / 240
页数:18
相关论文
共 10 条
[1]  
BUCKDAHN R, 1990, IN PRESS PROBAB TH R
[2]  
BUCKDAHN R, 1989, 105 HUMB U BERL SEKT
[3]  
BUCKDAHN R, IN PRESS STOCHASTICS
[4]  
Kusuoka S., 1982, J FAC SCI U TOKYO IA, V29, P567
[5]   STOCHASTIC CALCULUS WITH ANTICIPATING INTEGRANDS [J].
NUALART, D ;
PARDOUX, E .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 78 (04) :535-581
[6]   LINEAR STOCHASTIC DIFFERENTIAL-EQUATIONS WITH BOUNDARY-CONDITIONS [J].
OCONE, D ;
PARDOUX, E .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 82 (04) :489-526
[7]  
OCONE D, 1989, PROBAB STAT, V25, P39
[8]  
Ramer R., 1974, Journal of Functional Analysis, V15, P166, DOI 10.1016/0022-1236(74)90017-2
[9]  
Shiota Y., 1986, MATH REP, V9, P43, DOI [10.1007/BF01193054, DOI 10.1007/BF01193054]
[10]  
USTUNEL AS, 1988, LECT NOTES MATH, V1316, P247