SYMMETRICAL MULTISTEP METHODS FOR THE NUMERICAL-INTEGRATION OF PLANETARY ORBITS

被引:333
作者
QUINLAN, GD
TREMAINE, S
机构
[1] Can. Inst. for Theor. Astrophysics, University of Toronto, Toronto, Ont. M5S 1A1
关键词
D O I
10.1086/115629
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The limit to the numerical accuracy of integrations of planetary orbits is set by the accumulation of round-off and truncation error. For the usual Störmer multistep methods, even if steps are taken to reduce round-off error, truncation error still results in an energy error that grows linearly with time, which leads to a longitude error that grows quadratically with time. We have developed "symmetric" multistep methods for which truncation leads to a longitude error that grows only linearly with time. The superiority of the symmetric methods over the Stömer methods is illustrated by numerical examples. We discuss the optimum choice of the order and the coefficients of a symmetric multistep method for planetary integrations.
引用
收藏
页码:1694 / 1700
页数:7
相关论文
共 22 条
  • [1] THE OUTER SOLAR-SYSTEM FOR 200 MILLION YEARS
    APPLEGATE, JH
    DOUGLAS, MR
    GURSEL, Y
    SUSSMAN, GJ
    WISDOM, J
    [J]. ASTRONOMICAL JOURNAL, 1986, 92 (01) : 176 - 194
  • [2] Brouwer D., 1937, ASTRON J, V46, P149, DOI 10.1086/105423
  • [3] Cohen C. J., 1973, ASTR PAP AM EPHEMERI, VXXII, P1
  • [4] DAHLQUIST G, 1908, BIT, V18, P133
  • [5] FLOATING-POINT TECHNIQUE FOR EXTENDING AVAILABLE PRECISION
    DEKKER, TJ
    [J]. NUMERISCHE MATHEMATIK, 1971, 18 (03) : 224 - +
  • [6] NUMERICAL-INTEGRATION OF THE EQUATIONS OF MOTION OF CELESTIAL MECHANICS
    FOX, K
    [J]. CELESTIAL MECHANICS, 1984, 33 (02): : 127 - 142
  • [7] Gautschi W., 1961, NUMER MATH, V3, P381, DOI DOI 10.1007/BF01386037
  • [8] HENRICI P., 1962, DISCRETE VARIABLE ME
  • [9] MOTIONS OF THE PERIHELIONS OF NEPTUNE AND PLUTO
    Kinoshita, H
    Nakai, H
    [J]. CELESTIAL MECHANICS, 1984, 34 (1-4): : 203 - 217
  • [10] Knuth D.E., 1981, ART COMPUTER PROGRAM, V2