A GEOMETRIC BROWNIAN MOTION MODEL WITH COMPOUND POISSON PROCESS AND FRACTIONAL STOCHASTIC VOLATILITY

被引:0
作者
Intarasit, A. [1 ]
Sattayatham, P. [1 ]
机构
[1] Suranaree Univ Technol, Dept Math, Nakhon Ratchasima, Thailand
关键词
geometric Brownian motion; compound Poisson process; fractional stochastic volatility; approximate models;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce an approximate approach to a geometric Brownian motion (gBm) model with compound Poisson processes and fractional stochastic volatility. Based on a fundamental result on the L-2 -approximation of this fractional noise by semimartingales, we prove a convergence theorem concerning an approximate solution. A simulation example shows a significant reduction of error in a gBm with jump and fractional stochastic volatility as compared to the stochastic volatility.
引用
收藏
页码:25 / 47
页数:23
相关论文
共 43 条
  • [31] ESTIMATION OF THE COMPOUNDING DISTRIBUTION IN THE COMPOUND POISSON-PROCESS MODEL FOR EARTHQUAKES
    MOHARIR, PS
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-EARTH AND PLANETARY SCIENCES, 1992, 101 (04): : 347 - 359
  • [32] A martingale approach to a ruin model with surplus following a compound poisson process
    Oh, Soo-Mi
    Jeong, Miock
    Lee, Eui Yong
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2007, 36 (02) : 229 - 235
  • [33] A model for compound poisson process queuing system with batch arrivals and services
    Saritha S.
    Mamatha E.
    Reddy C.S.
    Anand K.
    Journal Europeen des Systemes Automatises, 2020, 53 (01): : 81 - 86
  • [34] Multi-purpose binomial model: Fitting all moments to the underlying geometric Brownian motion
    Kim, Y. S.
    Stoyanov, S.
    Rachev, S.
    Fabozzi, F.
    ECONOMICS LETTERS, 2016, 145 : 225 - 229
  • [35] Spot estimation for fractional Ornstein–Uhlenbeck stochastic volatility model: consistency and central limit theorem
    Yaroslav Eumenius-Schulz
    Statistical Inference for Stochastic Processes, 2020, 23 : 355 - 380
  • [36] Income inequality and mobility in geometric Brownian motion with stochastic resetting: theoretical results and empirical evidence of non-ergodicity
    Stojkoski, Viktor
    Jolakoski, Petar
    Pal, Arnab
    Sandev, Trifce
    Kocarev, Ljupco
    Metzler, Ralf
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2224):
  • [37] Simulating stock prices using geometric Brownian motion model under normal and convoluted distributional assumptions
    Mensah, Eric Teye
    Boateng, Alexander
    Frempong, Nana Kena
    Maposa, Daniel
    SCIENTIFIC AFRICAN, 2023, 19
  • [38] An integrated inventory model involving manufacturing setup cost reduction in compound Poisson process
    Huang, Chao-Kuei
    Cheng, T. L.
    Kao, T. C.
    Goyal, S. K.
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2011, 49 (04) : 1219 - 1228
  • [39] Spot estimation for fractional Ornstein-Uhlenbeck stochastic volatility model: consistency and central limit theorem
    Eumenius-Schulz, Yaroslav
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (02) : 355 - 380
  • [40] DYNAMIC MEAN-VARIANCE OPTIMIZATION UNDER CLASSICAL RISK MODEL WITH FRACTIONAL BROWNIAN MOTION PERTURBATION
    Zhang, Huayue
    Bai, Lihua
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2008, 11 (04) : 589 - 602