ANISOTROPIC MESH TRANSFORMATIONS AND OPTIMAL ERROR CONTROL

被引:60
作者
SIMPSON, RB
机构
[1] Department of Computer Science, University of Waterloo, Waterloo
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0168-9274(94)90025-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, research originating in several different applications has appeared on unstructured triangular meshes in which the vertex distribution is not locally uniform, i.e. anisotropic unstructured meshes. The techniques used have the common features that the distribution of triangle shapes for the mesh is controlled by specifying a symmetric tensor, and that the anisotropic mesh is the transform of an isotropic mesh. We discuss how these mechanisms arise in the theory of optimal error control, using simple model mesh generation problems, and review the related research in applications to computational fluid dynamics, surface triangulation, and semiconductor simulation.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 28 条
[1]   ANGLE CONDITION IN FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
AZIZ, AK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (02) :214-226
[2]   ANALYSIS OF OPTIMAL FINITE-ELEMENT MESHES IN R [J].
BABUSKA, I ;
RHEINBOLDT, WC .
MATHEMATICS OF COMPUTATION, 1979, 33 (146) :435-463
[3]  
BANK RE, IN PRESS NUMER MATH
[4]  
BERN M, IN PRESS COMPUTING E
[5]  
Castillo J.E., 1991, MATH ASPECTS NUMERIC
[6]   ON OPTIMAL INTERPOLATION TRIANGLE INCIDENCES [J].
DAZEVEDO, EF ;
SIMPSON, RB .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (06) :1063-1075
[7]   AN OPTIMAL TRIANGULAR MESHES FOR MINIMIZING THE GRADIENT ERROR [J].
DAZEVEDO, EF ;
SIMPSON, RB .
NUMERISCHE MATHEMATIK, 1991, 59 (04) :321-348
[8]  
DAZEVEDO EF, 1991, SIAM J SCI STAT COMP, V12, P1063
[9]  
Dubrovin B. A., 1984, MODERN GEOMETRY, V1
[10]   DATA DEPENDENT TRIANGULATIONS FOR PIECEWISE LINEAR INTERPOLATION [J].
DYN, N ;
LEVIN, D ;
RIPPA, S .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (01) :137-154