Sparse parameter estimation of LTI models with l(p) sparsity using genetic algorithm

被引:6
作者
Saini, Vikram [1 ]
Dewan, Lillie [1 ]
机构
[1] Natl Inst Technol, Dept Elect Engn, Kurukshetra 136119, Haryana, India
关键词
sparse optimisation; genetic algorithm; l(p) sparsity measure; simulation error model;
D O I
10.1504/IJMIC.2018.10010524
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sparse optimisation for the identification of parametric linear model structure is equivalent to the estimation of the parameter vector. After relaxing the assumption on the order of the system, sparse optimisation techniques can be utilised to find the optimal model. This paper proposes an optimisation method to find the sparse parameter estimates. For this purpose, l(p) norm (0 < p < 1) penalty of parameter vector is added to the quadratic loss function which is further minimised using genetic algorithm. For the model structures other than ARX, a simulation model is realised using conditions on the quadratic simulation error. A real coded genetic algorithm is used to minimise the simulation error model. Simulation results are given for the ARX and output error model structures to show the effectiveness of the simulation error model method.
引用
收藏
页码:14 / 21
页数:8
相关论文
共 29 条
[1]   Linear and nonlinear system identification techniques for modelling of a remotely operated underwater vehicle [J].
Ahmad, S. M. .
INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2015, 24 (01) :75-87
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]   Stochastic comparison algorithm for continuous optimization with estimation [J].
Bao, G ;
Cassandras, CG .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 91 (03) :585-615
[4]   Theoretical and experimental study of crossover operators of genetic algorithms [J].
Belfiore, NP ;
Esposito, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 99 (02) :271-302
[5]   Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding [J].
Bredies, Kristian ;
Lorenz, Dirk A. ;
Reiterer, Stefan .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 165 (01) :78-112
[6]   BETTER SUBSET REGRESSION USING THE NONNEGATIVE GARROTE [J].
BREIMAN, L .
TECHNOMETRICS, 1995, 37 (04) :373-384
[7]   Prediction- and simulation-error based perceptron training: Solution space analysis and a novel combined training scheme [J].
Connally, Patrick ;
Li, Kang ;
Irwin, George W. .
NEUROCOMPUTING, 2007, 70 (4-6) :819-827
[8]   A STATISTICAL VIEW OF SOME CHEMOMETRICS REGRESSION TOOLS [J].
FRANK, IE ;
FRIEDMAN, JH .
TECHNOMETRICS, 1993, 35 (02) :109-135
[9]   Penalized regressions: The bridge versus the lasso [J].
Fu, WJJ .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (03) :397-416
[10]  
Goldberg D.E., 2006, GENETIC ALGORITHMS