STRONG SUMMABILITY IN FRECHET SPACES WITH APPLICATIONS TO FOURIER-SERIES

被引:0
作者
BUNTINAS, M
机构
[1] Department of Mathematical Sciences, Loyola University Chicago, Chicago
关键词
D O I
10.1016/0021-9045(92)90100-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper examines strong Cesàro summability and strong Cesàro sectional boundedness of order 1 ≤ r < ∞ in Banach and Fréchet spaces E. The major result shows these topological properties of E to be equivalent to multiplier properties of the form E = (dvr ∩ c0) · E and E = dvr · E, where dvr is the space of sequences of dyadic variation of order r defined in this paper. These multiplier results show that several classical spaces of Fourier series have these properties. This introduces a new form of convergence in norm for Fourier series. The space L2π1, for example, has strong Cesàro summability of all orders 1 ≤ r < ∞. Fejér's Theorem states that for all f{hook} ε{lunate} L2π1, ( 1 (n + 1))∥∑k = 0n skf{hook} - f{hook} ∥L = o(1), (n → ∞), where skf{hook} is the kth partial sum of the Fourier series of f{hook}; since the dual of L2π1 is L2π∞, this is equivalent to sup∥g∥ ( 1 (n + 1))|∑k = 0n ∫02π g · (skf{hook} - f{hook})| = o(1), (n → ∞). As a consequence of strong Cesàro summability, the absolute value can be taken inside the summation and raised to any power 1 ≤ r < ∞. Namely, for all f{hook} ε{lunate} L2π1, sup∥g∥ 1 n+1 ∑ k=0 n|∫02π g · (skf{hook} - f{hook})|r = 0(1) (n → ∞) The supremum, however, cannot be taken inside the summation. © 1992.
引用
收藏
页码:56 / 73
页数:18
相关论文
共 15 条
[1]  
BORWEIN D, 1965, J LONDON MATH SOC, V40, P628
[2]  
BUNTINAS M, 1987, P AM MATH SOC, V101, P497
[3]   TOEPLITZ SECTIONS IN SEQUENCE SPACES [J].
BUNTINAS, M .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 78 (NOV) :451-460
[4]  
BUNTINAS M, 1976, P AM MATH SOC, V57, P233
[5]   CONVERGENT AND BOUNDED CESARO SECTIONS IN FK-SPACES [J].
BUNTINAS, M .
MATHEMATISCHE ZEITSCHRIFT, 1971, 121 (03) :191-&
[6]  
Edwards R.E., 1967, FOURIER SERIES MODER, V1
[7]  
EDWARDS RE, 1965, FUNCTIONAL ANAL
[8]  
FOMIN GA, 1978, MAT ZAMETKI, V23, P213
[9]  
GARLING DJH, 1967, PROC CAMB PHILOS S-M, V63, P997
[10]  
JACKSON M, 1975, THESIS U W ONTARIO