COEFFICIENT INEQUALITIES FOR STARLIKENESS AND CONVEXITY

被引:0
作者
Ali, Rosihan M. [1 ]
Nargesi, Mahnaz M. [1 ]
Ravichandran, V. [1 ,2 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
[2] Univ Delhi, Dept Math, Delhi 110007, India
来源
TAMKANG JOURNAL OF MATHEMATICS | 2013年 / 44卷 / 02期
关键词
Convex function; starlike function; k-uniformly convex function; coefficient inequality; hypergeometric functions;
D O I
10.5556/j.tkjm.44.2013.1041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an analytic function f (z)= z + Sigma(infinity)(n=2) a(n)z(n) satisfying the inequality Sigma(infinity)(n=2) n(n-1)vertical bar a(n)vertical bar <= beta, sharp bound on beta is determined so that f is either starlike or convex of order alpha. Several other coefficient inequalities related to certain subclasses are also investigated.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 13 条
  • [1] Planar harmonic convolution operators generated by hypergeometric functions
    Ahuja, Om P.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (03) : 165 - 177
  • [2] Ali RM, 2011, MATH NEWSLETTER, V21, P16
  • [3] ALI RM, 2005, INT J MATH MATH SCI, P561
  • [4] Goodman A.W., 1991, ANN POL MATH, V56, P87, DOI [DOI 10.4064/ap-56-1-87-92, 10.4064/ap-56-1-87-92, DOI 10.4064/AP-56-1-87-92]
  • [5] Conic regions and k-uniform convexity
    Kanas, S
    Wisniowska, A
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) : 327 - 336
  • [6] Kim Y.C., 1999, INT J MATH MATH SCI, V22, P765, DOI [10.1155/S0161171299227652, DOI 10.1155/S0161171299227652]
  • [7] Li JL, 2002, INDIAN J PURE AP MAT, V33, P313
  • [8] Properties and characteristics of certain subclasses of starlike functions of order β
    Liu, Ming-Sheng
    Zhu, Yu-Can
    Srivastava, H. M.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (3-4) : 402 - 419
  • [9] Merkes E.P., 1962, P AM MATH SOC, V13, P960, DOI [10.1090/S0002-9939-1962-0142747-7, DOI 10.1090/S0002-9939-1962-0142747-7]
  • [10] Ponnusamy S., 1998, ANN U MARIA CURIE, V1, P141