THE STEINER PROBLEM WITH EDGE LENGTH-1 AND LENGTH-2

被引:214
作者
BERN, M [1 ]
PLASSMANN, P [1 ]
机构
[1] CORNELL UNIV,CTR APPL MATH,ITHACA,NY 14853
关键词
D O I
10.1016/0020-0190(89)90039-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:171 / 176
页数:6
相关论文
共 12 条
[1]  
BERN M, 1989, UNPUB APPROXIMATION
[2]   A NEW BOUND FOR EUCLIDEAN STEINER MINIMAL-TREES [J].
CHUNG, FRK ;
GRAHAM, RL .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1985, 440 :328-346
[3]   STEINER MINIMAL TREES [J].
GILBERT, EN ;
POLLAK, HO .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (01) :1-&
[4]   STEINER MINIMAL TREES WITH RECTILINEAR DISTANCE [J].
HWANG, FK .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 30 (01) :104-115
[5]  
Kou LT, 1987, C NUMER, V59, P147
[6]   A FASTER APPROXIMATION ALGORITHM FOR THE STEINER PROBLEM IN GRAPHS [J].
MEHLHORN, K .
INFORMATION PROCESSING LETTERS, 1988, 27 (03) :125-128
[7]  
MONIEN B, 1983, LECT NOTES COMPUT SC, V159, P341
[8]  
PAPADIMITRIOU CH, 1989, UNPUB
[9]  
PAPADIMITRIOU CH, 1988, 20TH P ANN ACM S THE, P229
[10]  
Rayward-Smith V.J., 1983, INT J MATH EDUC SCI, V14, P15, DOI DOI 10.1080/0020739830140103