APPROXIMATION OF REAL MATRICES BY INTEGRAL MATRICES

被引:5
作者
HARMAN, G [1 ]
机构
[1] UNIV COLL CARDIFF,COLL CARDIFF,SCH MATH,INST MATH,CARDIFF CF2 4AG,WALES
关键词
D O I
10.1016/0022-314X(90)90053-T
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that, given a k × k real matrix (αij) with determinant one, and a positive integer n, there exist integral matrices (Aij) with det Aij = n, such that |n 1 kαij - Aij| < Cn 3 4k for all i and j. It is also demonstrated that the exponent 3 4k cannot be replaced by a number smaller than 1 2k. © 1990.
引用
收藏
页码:63 / 81
页数:19
相关论文
共 7 条
[1]  
Baker RC., 1986, DIOPHANTINE INEQUALI
[2]   APPROXIMATION LATTICES OF PARA-ADIC NUMBERS [J].
DEWEGER, BMM .
JOURNAL OF NUMBER THEORY, 1986, 24 (01) :70-88
[3]  
HOOLEY C, 1978, J REINE ANGEW MATH, V303, P21
[4]  
Hooley C, 1976, APPL SIEVE METHODS, P15
[5]  
HUXLEY MN, 1972, INVENT MATH, V15, P164
[6]   APPROXIMATION OF REAL MATRICES BY INTEGRAL MATRICES [J].
TIJDEMAN, R .
JOURNAL OF NUMBER THEORY, 1986, 24 (01) :65-69